数学五年级下人教新课标4.1.3分数与除法 说课

文档属性

名称 数学五年级下人教新课标4.1.3分数与除法 说课
格式 zip
文件大小 57.2KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-07-02 21:38:58

图片预览

文档简介

(共19张PPT)
分数与除法
——说课
一、对教材的理解:
分数与除法的关系是新课标人教版义务教育课程标准实验教科书五年级下册数学分数的意义中的一节内容。本节课是在学生已经学习的分数的意义的基础上进行教学的。学生在前面学习分数的产生时,曾经提到计算时往往不能正好得到整数的结果,常用分数来表示,这实际上已经初步涉及到分数与除法的关系。教学分数的意义时,讲到把一个物体或一些物体组成一个整体平均分成若干份,也蕴含着分数与除法的关系。但是都没有明确点出来。
现在学生理解了分数的意义,再来学习分数与除法的关系,使学生初步知道两个数相除,只要除数不为0,不论被除数小于、等于、大于除数,也不论能否除尽,都可以用分数来表示商。这样可以加深和扩展学生对分数意义的理解,同时也为讲解假分数以及把假分数化成整数或带分数做好了准备。
教材安排了两道例题来说明分数与除法的关系。例1是把一个物体(一块蛋糕)平均分成若干份,求每份是多少。学生可以根据整数除法的含义,列出除法算式;可以根据分数的意义,直接说出结果。这样就把除法计算与分数联系了起来。
例2是把许多物体(3块月饼)平均分成4份,求每份是多少。学生容易理解用除法计算,但是理解计算结果要困难一些。为此,教材安排了一组图来说明。在这两个实例的基础上,总结分数与除法的关系。
本课时的教材编排以生活情境和问题情境贯穿始终,以感知、发现、归纳、应用为主线循序渐进地引导学生理解掌握分数与除法的关系,既巩固了对分数意义的认识,又为后面学习分数的基本性质,特别是学习分数化小数作出了理论铺垫,在整个第二单元的教学中起着重要的承上启下的作用。
因此,我认为本课时的教学重点是引导学生探索、理解分数与除法的关系,会用分数表示除法的商。
本课时的教学难点是:理解3块月饼的1/4等于1块月饼的3/4。
基于以上的分析认识,我将本课时的教学目标设定如下:
1、让学生在具体的问题情境中通过观察、比较、发现、归纳,理解、掌握分数与除法的关系,并能用分数表示两个数相除的商。
2、引导学生参与探索分数与除法关系的全过程,培养学生动手操作、观察、比较和归纳的能力。
3、让学生体验到分数与日常生活密切相关,初步感知许多实际问题可以借助分数来解决。通过理解分数与除法的关系,受到事物普遍联系的唯物主义思想教育。
二、教学过程设计:
基于以上对教材的理解,为了完成上述教学目标,突出教学的重点,突破教学的难点,我主要采用创设问题情境,直观演示,学生动手操作、引导归纳、小组合作学习等教学方法。
体现在下面复习引入、探究发现、巩固应用三环节教学过程中:
(一)复习引入:
课始,用课件出示一盒月饼(8块),并引导学生依次思考解决下面的问题:
1、如果把这8块月饼平均分给一个小组的4个同学,每人可以分得多少块?怎样列式?
指名学生回答后教师板书:8÷2=4(块)
2、如果把这1块月饼平均分给两个同学(教师指第一桌的两个同学),每个同学能分到多少块?
指名学生回答后教师板书:1÷2=0.5(块)= 1/2 (块)
3、如果把这1块月饼平均分给3个同学,每个同学分得多少块?该怎样列式?结果是多少块?(学生借助分数的意义不难解答,结果应该1/3 块, 师用课件演示:每人分得1块月饼的1/3 ,就是1/3 块)
板书:1÷3= 1/3 (块)   
4、引导学生观察这些算式,得出两个数相除,商可能是整数,也可能是小数,还可能是分数。从而引出本节课的学习内容,揭示并板书课题。
【这个环节承接了上一节课节在学习分数的意义时学生熟悉的分月饼情境,既使学生体验了两个数相除,商可能是整数,也可能是小数,还可能是分数,同时又通过一个相对简单的问题引出除法与分数这两个教学内容的主角,通过分一块月饼引出后面的分三块月饼。】
 (二)探究发现
环节一:设疑,激发探究兴趣
如果我们每组发三块月饼,四个同学来分,平均每人分多少块呢?
【创设一个有一定难度问题情境,学生无法通过直观和已有知识经验解决,必须重新整理思路或者进行动手操作】
环节二:动手操作分月饼,多种思路说分法
以四人小组为单位,拿出3个圆纸片表示3块月饼,在组内分一分,说一说,重点让学生说出分得思路。
如方法一:一个一个分,把一块月饼平分成4份,1份是 1/4 块,3个 1/4 块就是 3/4 块;
方法二:三个一齐分,把三块月饼平均分成四份,每份中有3个1/4 块,就是 3/4 块。
并辅以视频展示台和课件展示每种分法的具体过程,让学生清楚认识,每人分得的确块月饼的的具体含义,从而理解3块月饼的1/4就等于1块月饼的3/4。
教师适时板书3÷4= 3/4(块)
【3块月饼平均分成4份,每份有3/4块的思维过程既是本节课的重点又是难点。为此,我设计了四人小组为单位进行探究,切合了问题情境中的4块月饼的数字,便于检验平均分的结果,通过分一分、说一说、看一看、摆一摆这样的形式,可以让学生直观地感知、完整地思考、畅快地表达平均分的过程,尊重学生的个性思考,并鼓励多种思路去分。】
  环节三:借助学具,深化研究
如果把5块饼平均分给8个同学,每个同学分得多少块?让学生用手中的圆形纸片,先独立想一想,分一分,再以四人小组为单位说一说你是怎样分的,结果是多少?
【许多个物体平均分成若干份,每份不够1个的时候,求每份是多少,对小学生来理解起来是个难点,我觉得只通过一个事例还不足以突破本节课学生在理解上的困难。因此,在继3块月饼平均分成4个同学,每个同学分到 3/4块后,我再次为学生创设了动手操作的平台,让学生利用手中的圆形纸片分一分,将5块月饼平均分给8个同学,每个同学分得多少块?在操作交流中进一步丰富学生的表象认识,让学生进一步实践体验将多个物体平均分成若干份,每份是多少的思维过程,突破了本课的教学难点。
  
同时,在这个问题的小组合作处理上,我的要求有别于刚才将3块月饼平均分给4个同学,刚才分的时候是直接小组说一说,分一分;而现在的要求是先独立想一想,分一分,再以四人小组为单位说一说你是怎样分的,结果是多少?这样设计的意图是培养发展学生的抽象思维能力,迁移类推能力并渗透了猜想、骓证的数学思想。因为学生有了将3块月饼平均分给4个同学,每个同学分得 块的经历后,5块月饼平均分给8个同学,每个同学分得多少块?学生先想一想,肯定很多同学能推理想象到结果可能是 块、然后再操作验证自己的猜想,为学生后面的类推打下的坚实的基础。学生对两个数相除的商的结果的来历更加是知其所以然了。】
环节四:借助表象,快速类比推理。
不借助学具,让学生很快想出下面各题的结果:
(1)把2块月饼平均分成3份,每份是多少块?
(2)把3块月饼平均分成5份,每份是多少块?
(3)把a块月饼平均分成8份,每份是多少块?
(4)把a块月饼平均分成b份,每份是多少块?
【通过这个练习完成从个别到一般的思维过渡,为学生发现分数和除法的关系提供更多的素材,学生的发现可以说是水到渠成。】
环节五:观察算式,概括总结分数与除法的关系
【这个环节重点要引导学生发现,发现分数恰好是相应除法算式的结果,发现除法算式各部分与分数各部分的关系,这里一定要通过指导学生用准确的语言进行表述,比如被除数相当于分数的分子中的相当于而不是就是,便于学生认识到分数与除法既相联系又相区别,同时结合除数不能为,强调分母不能为0。】
(三)巩固应用
在这个环节我主要安排了以下3道练习:
1、我能行:用分数表示下面各式的商
2÷100= 6÷4= 28÷7=
200÷8= 0.7÷2= m÷n = (n≠0)
2、填一填:在下面的括号里填上适当的数。
7÷( )= 7/9 13/15=( )÷( ) ( )÷7= 3/( )
3、解决问题我能行:
一个3平方米的花坛,种5种花,每种花平均占地多少平方米?7种呢?
【本组中第一道练习题中不仅有被除数小于除数的,还有被除数大于除数的,而且还设计了被除数是小数的,通过练习,学生知道了不论被除数小于、大于或等与除数,都可以用分数来表示它的商,这组练习不仅加深和扩展了对本节课知识的学习,又加深了学生对分数意义的理解,同时为讲假分数及分数的基本性质做了铺垫。第二道练习题是对第一题的拓展与延伸,目的是进一步检测学生灵活运用分数与除法的关系的能力。第三道题解决问题,我有意设计了两问,第一问的结果学生可能用小数表示,也可能用分数表示,都是可以的,可以使学生体验我们今天学习了用分数表示除法的商与以前所学的知识并不矛盾;而第二问用小数表示它的商,商是一个无限小数,而用分数表示就不会有这样的现象发生,让学生体验了知识的发展过程,感受了所学知识在实际生活中的作用,进一步激发学生学习数学的兴趣】
  综上所述,教学过程的三环节设计,注意了本课时在单元中的衔接,创设了学生熟悉的问题情境。动手操作、直观演示、引导归纳、小组合作等教学方法体现了对重点的突出和难点的突破,让学生通过观察、比较、发现、归纳,理解、掌握分数与除法的关系,学生参与了探索分数与除法关系的全过程,达成了教学目标。
以上是我对这节课的理解与设想,如有不当之处,尽请大家提出宝贵意见。谢谢!
分数的
意义
除法的意义
二者的关系
分数与除法知识树
平均分
分数与除法