鲁教版(五四学制)六年级上册第四章 一元一次方程4.1等式与方程课件(2份打包)

文档属性

名称 鲁教版(五四学制)六年级上册第四章 一元一次方程4.1等式与方程课件(2份打包)
格式 zip
文件大小 530.0KB
资源类型 教案
版本资源 鲁教版
科目 数学
更新时间 2021-09-14 20:46:55

文档简介

(共19张PPT)
鲁教版
数学
六年级

4.1
等式与方程
泰山景区黄前中学
学习目标
2、理解什么是一元一次方程。
3、理解什么是方程的解,学会检验一个数值是不是方程的解的方法。
1、能根据题意,正确列出一元一次方程
知识复习1
1、请说出几个你想到的等式,
你认为它们有什么不同?
2、你还记得小学里学过的方程吗?举例说明
3、说出下列等式的不同,并分类。
3+5=8
12-7=5
-5-9=-14
2x-1=6
a+b=10
5m+2=3
总结:什么叫方程?
知识复习2
判断下列各式是否是方程
问题与思考
小明与小刚的对话,
小明说:我的年龄的2倍,减5得21,
你能知道我的年龄吗
小刚说:
你的年龄是13岁。
小明:
你是怎样算出来的?
小刚:
设你的年龄为x岁,
可得方程
2x+5=21,解得;
x=13.
小明:
是这样,
你会根据题意列方程吗?
自学与应用
看课本120-121页,列出其中四个方程
1、5x+40=100
3、(1+147.30%)x=8930
4、x(x+25)=5850
思考:比较以上方程,你能得出什么结论?
观察与思考
说出下列方程的共同特点
它们的共同点是:
你能总结出一元一次方程的定义吗?
新课学习1
概念学习:
在一个方程中,方程两边都是整式
只含有一个未知数,
并且未知数的次数都是1,
这样的方程叫一元一次方程
归纳:
1、方程两边都是整式
2、一个未知数
3、未知数的次数都是1
练习1:判断下列方程是不是一元一次方程:
(1)2x+3y=0  (  )
(2)
–3x+2=0  (  )
(3)x+1=2x-5
   (  )
(4)0.32m-(3+0.02m)=0.7
(  )
练一练
判断下列方程是否是一元一次方程,为什么?
新课学习(2)
看课本121页找出:
1、什么叫方程的解?
2、什么叫解方程?
思考:
怎样判断一个数是否是一个方程的解
例如:
学一学
例:X=1和x=2中哪个是方程2x-2=x+1的解?     
具体做法是:
练一练:
请你判断下列给定的t的值中,哪个是方程2t+1=7-t的解?
(1
)t=-2
(2)
t=2
(3)t=1
对应练习:
判断下列各数是否是方程的解
(1)2x+5=6
(x=1)
(2)
3(x-2)-1=x+3
(x=5)
(3)
x2-2x-3=0
(x=3,x=-1)
(4)3x+(10-x)=20
(x=2)
集中练习
1、课本121页,“随堂练习”,1题、2题
2、课本22页,习题4.1
1-3题
课堂小结
1、你能说出下列概念吗?
(1)方程,(2)方程的解,
(3)一元一次方程,
(5)解方程。
2、你会吗?
(1)判断一个方程是否是一元一次方程。
(2)判断一个数是否是方程的解。
当堂检测
1、下列方程是一元一次方程的是(

A、x+3y
B、
=1
C、y=1-2x
D、x2=9
2、方程(a+2)x2+5x-3=3是一元一次方程,则a的值是(

A、
2
B、-2
C、0
D、4
3.、x=1是下列方程(
)的解:
A
1-x=2
B
2x-1=4-3x
C
3-(x-1)=4
D
x-4=5x-2
4、下列说法:①等式是方程;②x=-4是方程5x+20=0的解;
③x=-4和x=4都是方程12-x=16的解.
其中说法不正确的是_______。(填序号)
5、若x=0是关于x的方程2x-3n=1的解,则n=_______。
6、关于x的方程
是一元一次方程,求a的值。
7、某足球场的周长为344米,长和宽之差为36米,
这个足球场的长与宽分别是多少米?


判断下列未知数的值是否是方程的解(共19张PPT)
鲁教版数学
六年级
上册
4.1等式与方程(第二课时)
泰安市黄前中学
学习目标
1、理解等式的性质1

等式的性质2
2、会利用等式的性质,
把等式进行变形。
3、熟练运用等式的基本性质,
解方程。
自学探究
看课本122-123页,
自己学习等式的基本性质
基本性质1:
基本性质2:
等式的基本性质
等式的基本性质1
等式两边同时加上(或减去)同一个代数式,
所得的结果仍是等式
等式的基本性质2
等式两边同时乘同一个数
(或除以同一个不为0的数)
所得结果仍是等式
练一练1
说出下列变形应用了等式的那个性质,
怎样变形的。
1、由a=b得a+2=b+2
2、由a=b得a-3=b-3
3、由-m=5得m=-5
4、由-2x=10得x=-5
练一练2
利用等式的基本性质填空。
(学生小组讨论完成)
(1)如果2x-5=3那么2x=3+

(2)如果-x=1,那么x=

(3)如果x+3=10,两边都减去3,
那么

(4)如果2x-7=15-x,两边都加上7+x,
那么

(5)如果4a=-12,两边除以4,
那么

新课学习1
利用等式的基本性质,解一元一次方程
例1
解下列方程
(1)x+2=5
方程两边都减去2,得;
X+2-2=5-2
所以,x=3
(2)3=x-5
方程两边都加上5,得
3+5=x-5+5
8=x
既,x=8
利用等式的基本性质,解一元一次方程
例1
解下列方程
新课学习2
(1)-3x=15
方程两边同时除以-3,得
所以,x=-5
利用等式的基本性质,解一元一次方程
例2
解方程
利用等式的基本性质,解一元一次方程
例2
解方程
))
方程两边都加上2

方程两边都乘以-3,得:
对应练习1
对应练习2
解方程:
1、用等式的基本性质解方程,有哪些过程?
2、在运用性质时,应注意什么问题?
3、你认为如何选择适当的性质,解方程。
综合练习(1)
1、在下列括号内填上适当的数或整式
使等式仍然成立,并说出根据。
1、如果x+3=10,那么x=(
),根据是:
2、如果2a-5=11,那么2a=(
),根据是:
3、如果4m=-12,那么m=(
),根据是:
根据是:
根据是:
综合练习(2)
填空
综合练习3
1、课本124页,随堂练习
1题、2题
2、课本125页,知识技能
2题
课堂小结
1、这节课你学会了什么?
2、你能正确叙述等式的基本性质吗?
3、你会用等式的性质解一元一次方程吗?
当堂检测
1.下列等式变形错误的是(
)
A.由a=b得a+5=b+5;
B.由a=b得6a=6b
;
C.由6+a=b-6得a=b-12;
D.由x=y得x÷3=3÷y
2.已知等式ax=ay,下列变形不正确的是(
).
A.x=y
B.ax+1=
ay+1
C.ay=ax
D.3-ax=3-ay
3.用适当的数或式子填空,
并说明是根据等式的哪一条性质以及怎样变形的:
(1)如果x+8=10,那么x=10+_________;
(2)如果-3x=8,那么x=_____________;
(3)如果
=-2,
那么_________=-6;
4.解方程:
1)2x+1=7
2)3x+3=2x+7;
希望你展翅高飞