物理高二期中期末考前复习及相关错题集练习

文档属性

名称 物理高二期中期末考前复习及相关错题集练习
格式 zip
文件大小 434.8KB
资源类型 教案
版本资源 广东版
科目 物理
更新时间 2012-07-03 11:26:08

文档简介

第八章 电场错题集

一、主要内容
本章内容包括电荷、电场、电场力、电场强度、电场线、电势、电势差、电场力功、电容器、电容的定义和平行板电容器电容的决定条件等基本概念,以及库仑定律、静电感应、电场强度与电势差的关系、带电粒子在电场中的运动规律等。
二、基本方法
本章涉及到的基本方法有,运用电场线、等势面几何方法形象化地描述电场的分布;将运动学动力学的规律应用到电场中,分析解决带电粒子在电场中的运动问题、解决导体静电平衡的问题。本章对能力的具体要求是概念准确,不乱套公式懂得规律的成立条件适用的范围。从规律出发进行逻辑推理,把相关知识融会贯通灵活处理物理问题。
三、错解分析
在本章知识应用的过程中,初学者常犯的错误主要表现在:不善于运用电场线、等势面为工具,将抽象的电场形象化后再对电场的场强、电势进行具体分析;对静电平衡内容理解有偏差;在运用力学规律解决电场问题时操作不规范等。
例1 如图8-1所示,实线是一个电场中的电场线,虚线是一个负检验电荷在这个电场中的轨迹,若电荷是从a处运动到b处,以下判断正确的是: [ ]
A.电荷从a到b加速度减小
B.b处电势能大
C.b处电势高
D.电荷在b处速度小
【错解】
由图8-1可知,由a→b,速度变小,所以,加速度变小,选A。因为检验电荷带负电,所以电荷运动方向为电势升高方向,所以b处电势高于a点,选C。
【错解原因】
选A的同学属于加速度与速度的关系不清;选C的同学属于功能关系不清。
【分析解答】由图8-1可知b处的电场线比a处的电场线密,说明b处的场强大于a处的场强。根据牛顿第二定律,检验电荷在b处的加速度大于在a处的加速度,A选项错。
由图8-1可知,电荷做曲线运动,必受到不等于零的合外力,即Fe≠0,且Fe的方向应指向运动轨迹的凹向。因为检验电荷带负电,所以电场线指向是从疏到密。再利用“电场线方向为电势降低最快的方向”判断a,b处电势高低关系是Ua>Ub,C选项不正确。
根据检验电荷的位移与所受电场力的夹角大于90°,可知电场力对检验电荷做负功。功是能量变化的量度,可判断由a→b电势能增加,B选项正确;又因电场力做功与路径无关,系统的能量守恒,电势能增加则动能减小,即速度减小,D选项正确。
【评析】理解能力应包括对基本概念的透彻理解、对基本规律准确把握。本题就体现高考在这方面的意图。这道小题检查了电场线的概念、牛顿第二定律、做曲线运动物体速度与加速度的关系、电场线与等势面的关系、电场力功(重力功)与电势能(重力势能)变化的关系。能量守恒定律等基本概念和规律。要求考生理解概念规律的确切含义、适用条件,鉴别似是而非的说法。

例2 将一电量为q=2×106C的点电荷从电场外一点移至电场中某点,电场力做功4×10-5J,求A点的电势。
【错解】
【错解原因】
错误混淆了电势与电势差两个概念间的区别。在电场力的功的计算式W=qU中,U系指电场中两点间的电势差而不是某点电势。
【分析解答】
解法一:设场外一点P电势为UP所以UP=0,从P→A,电场力的功W=qUPA,所以W=q(UP-UA),
即4×10-5=2×10-6(0-UA) UA=-20V
解法二:设A与场外一点的电势差为U,由W=qU,
因为电场力对正电荷做正功,必由高电势移向低电势,所以UA= -20V
【评析】
公式W=qU有两种用法:(1)当电荷由A→B时,写为W=qUAB=q(UA-UB),强调带符号用,此时W的正、负直接与电场力做正功、负功对应,如“解法一”;(2)W,q,U三者都取绝对值运算,如“解法二”,但所得W或U得正负号需另做判断。建议初学者采用这种方法。

例3 点电荷A和B,分别带正电和负电,电量分别为4Q和Q,在AB连线上,如图8-2,电场强度为零的地方在 [ ]
A.A和B之间 B.A右侧
C.B左侧 D.A的右侧及B的左侧
【错解】
错解一:认为A,B间一点离A,B距离分别是2r和r,则A,B
错解二:认为在A的右侧和B的左侧,由电荷产生的电场方向总相反,因而都有可能抵消,选D。
【错解原因】
错解一忽略了A,B间EA和EB方向都向左,不可能抵消。
错解二认为在A的右侧和B的左侧,由两电荷产生的电场方向总相反,因而都有可能抵消,却没注意到A的右侧EA总大于EB,根本无法抵消。
【分析解答】
因为A带正电,B带负电,所以只有A右侧和B左侧电场强度方向相反,因为QA>QB,所以只有B左侧,才有可能EA与EB等量反向,因而才可能有EA和EB矢量和为零的情况。
【评析】
解这类题需要的基本知识有三点:(1)点电荷场强计算公式
点电荷而来;(3)某点合场强为各场源在该点场强的矢量和。

例4 如图8-3所示,QA=3×10-8C,QB=-3×10-8C,A,B两球相距5cm,在水平方向外电场作用下,A,B保持静止,悬线竖直,求A,B连线中点场强。(两带电小球可看作质点)
【错解】
以A为研究对象,B对A的库仑力和外电场对A的电场力相等,所
AB中点总场强E总=E+EA+EB=E外=1.8×105(N/C),方向向左。
【错解原因】
在中学阶段一般不将QB的电性符号代入公式中计算。在求合场强时,应该对每一个场做方向分析,然后用矢量叠加来判定合场强方向,
【分析解答】
以A为研究对象,B对A的库仑力和外电场对A的电场力平衡,
E外方向与A受到的B的库仑力方向相反,方向向左。在AB的连线中点处EA,EB的方向均向右,设向右为正方向。则有E总=EA+EB-E外。
【评析】
本题检查考生的空间想象能力。对于大多数同学来说,最可靠的办法是:按照题意作出A,B的受力图。从A,B的电性判断点电荷A,B的场强方向,从A或B的受力判断外加匀强电场的方向。在求合场强的方向时,在A,B的连线中点处画出每一个场强的方向,最后再计算。这样做恰恰是在按照物理规律解决问题。

例5 在电场中有一条电场线,其上两点a和b,如图8-4所示,比较a,b两点电势高低和电场强度的大小。如规定无穷远处电势为零,则a,b处电势是大于零还是小于零,为什么?
【错解】
顺电场线方向电势降低,∴Ua>Ub,因为无穷远处电势为零,顺电场线方向电势降低,∴Ua>Ub>0。
【错解原因】
由于把所给电场看成由正点电荷形成的电场,认为从正电荷出发,顺电场线电势逐渐减小到零,从而得出Ua,Ub均大于零。
【分析解答】
顺电场线方向电势降低,∴Ua>Ub,由于只有一条电力线,无法看出电场线疏密,也就无法判定场强大小。同样无法判定当无穷远处电势为零时,a,b的电势是大于零还是小于零。若是由正电荷形成的场,则Ea>Eb,Ua>Ub>0,若是由负电荷形成的场,则Ea<Eb,0>Ua>Ub。
【评析】
只有一条电场线,可以判定各点电势高低,但无法判定场强大小及电势是否大于零。

例6 如图8-5所示,把一个不带电的枕型导体靠近带正电的小球,由于静电感应,在a,b端分别出现负、正电荷,则以下说法正确的是:
A.闭合K1,有电子从枕型导体流向地
B.闭合K2,有电子从枕型导体流向地
C.闭合K1,有电子从地流向枕型导体
D.闭合K2,没有电子通过K2
【错解】枕型导体电荷总是守恒的,没有电子流过K2。选D。
【错解原因】
由于对没有正确理解电荷守恒的相对性,所以在本题中认为枕型导体的电荷总是守恒的,便错选答案D。
【分析解答】
在K1,K2都闭合前,对于枕型导体它的电荷是守恒的,a,b出现的负、正电荷等量。当闭合K1,K2中的任何一个以后,便把导体与大地连通,使大地也参与了电荷转移。因此,导体本身的电荷不再守恒,而是导体与大地构成的系统中电荷守恒。由于静电感应,a端仍为负电荷,大地远处感应出等量正电荷,因此无论闭K1还是K2,都是有电子从地流向导体,应选答案C。
【评析】
在解决此类静电平衡问题时,对电荷守恒的理解应为:
电荷守恒定律有相对性,一个物理过程中,某个物体或某些物体的电荷并不守恒,有增或有减,而这一过程中必有另一些物体的电荷有减或有增,其中的增量和减量必定相等,满足全范围内的守恒。即电荷是否守恒要看是相对于哪一个研究对象而言。
电荷守恒是永恒的,是不需要条件的。电荷守恒定律也是自然界最基本的规律之一。在应用这个定律时,只要能够全面地考察参与电荷转移的物体,就有了正确地解决问题的基础。

例7 如图8-6所示,两个质量均为m的完全相同的金属球壳a与b,其壳层的厚度和质量分布均匀,将它们固定于绝缘支座上,两球心间的距离为l,为球半径的3倍。若使它们带上等量异种电荷,使其电量的绝对值均为Q,那么,a、b两球之间的万有引力F引库仑力F库分别为:
【错解】
(1)因为a,b两带电球壳质量分布均匀,可将它们看作质量集中在球心的质点,也可看作点电荷,因此,万有引力定律和库仑定律对它们都适用,故其正确答案应选A。
(2)依题意,a,b两球中心间的距离只有球半径的3倍,它们不能看作质点,也不能看作点电荷,因此,既不能用万有引力定律计算它们之间的万有引力,也不能用库仑定律计算它们之间的静电力,故其正确答案应选B。
【错解原因】
由于一些同学对万有引力定律和库仑定律的适用条件理解不深刻,产生了上述两种典型错解,因库仑定律只适用于可看作点电荷的带电体,而本题中由于a,b两球所带异种电荷的相互吸引,使它们各自的电荷分布不均匀,即相互靠近的一侧电荷分布比较密集,又因两球心间的距离l只有其半径r的3倍,不满足l>>r的要求,故不能将两带电球壳看成点电荷,所以不能应用库仑定律。
万有引力定律适用于两个可看成质点的物体,虽然两球心间的距离l只有其半径r的3倍,但由于其壳层的厚度和质量分布均匀,两球壳可看作质量集中于球心的质点。因此,可以应用万有引力定律。
综上所述,对于a,b两带电球壳的整体来说,满足万有引力的适用条件,不满足库仑定律的适用条件,故只有选项D正确。
【评析】
用数学公式表述的物理规律,有它的成立条件和适用范围。也可以说物理公式是对应着一定的物理模型的。应用物理公式前,一定要看一看能不能在此条件下使用该公式。

例8 如图8-7中接地的金属球A的半径为R,A点电荷的电量Q,到球心距离为r,该点电荷的电场在球心O处的场强等于: [ ]
【错解】
根据静电平衡时的导体内部场强处处为零的特点,Q在O处场强为零,选C。
【错解原因】
有些学生将“处于静电平衡状态的导体,内部场强处处为零”误认为是指Q电荷电场在球体内部处处为零。实际上,静电平衡时O处场强
相等,方向相反,合场强为零。
【分析解答】
静电感应的过程,是导体A(含大地)中自由电荷在电荷Q所形成的外电场下重新分布的过程,当处于静电平衡状态时,在导体内部电荷Q所形成的外电场E与感应电荷产生的“附加电场E'”同时存在的,且在导体内部任何一点,外电场电场场强E与附加电场的场强E'大小相等,方向相反,这两个电场叠加的结果使内部的合场强处处为零。即E内=0。
【评析】
还应深入追究出现本题错解的原因:只记住了静电平衡的结论,对静电平衡的全过程不清楚。要弄清楚“导体进入电场,在电场力的作用下自由电子定向移动,出现感应电荷的聚集,进而形成附加电场”开始,直到“附加电场与外电场平衡,使得导体内部的场强叠加为零,移动自由电子电场力为零。”为止的全过程。

例9 如图8-8所示,当带正电的绝缘空腔导体A的内部通过导线与验电器的小球B连接时,问验电器是否带电?
【错解】
因为静电平衡时,净电荷只分布在空腔导体的外表面,内部无静电荷,所以,导体A内部通过导线与验电器小球连接时,验电器不带电。
【错解原因】
关键是对“导体的外表面”含义不清,结构变化将要引起“外表面”的变化,这一点要分析清楚。错解没有分析出空腔导体A的内部通过导线与验电器的小球B连接后,验电器的金箔成了导体的外表面的一部分,改变了原来导体结构。A和B形成一个整体,净电荷要重新分布。
【分析解答】
当导体A的内部通过导线与验电器的小球B连接时,导体A和验电器已合为一个整体,整个导体为等势体,同性电荷相斥,电荷重新分布,必有净电荷从A移向B,所以验电器带正电。
【评析】
一部分同学做错这道题还有一个原因,就是知识迁移的负面效应。他们曾经做过一道与本题类似的题:“先用绝缘金属小球接触带正电的绝缘空腔导体A的内部,然后将绝缘金属小球移出空腔导体A与验电器的小球B接触,验电器的金箔不张开。”他们见到本题就不假思索地选择了不带电的结论。“差异就是矛盾,”学习中要善于比较,找出两个问题的区别才方能抓住问题的关键。这两道题的差异就在于:一个是先接触内壁,后接触验电器小球;另一个是正电的绝缘空腔导体A的内部通过导线与验电器的小球B连接。进而分析这种差异带来的什么样的变化。生搬硬套是不行的。

例10 三个绝缘的不带电的相同的金属球A,B,C靠在一起,如图8-9所示,再将一个带正电的物体从左边靠近A球,并固定好,再依次拿走C球、B球、A球,问:这三个金属球各带什么电?并比较它们带电量的多少。
【错解】
将带正电的物体靠近A球,A球带负电,C球带正电,B球不带电。将C,B,A三球依次拿走,C球带正电,B球不带电,A球带负电,QA=QC。
【错解原因】
认为将C球拿走后,A,B球上所带电量不改变。其实,当C球拿走后,A,B球原来的静电平衡已被破坏,电荷将要重新运动,达到新的静电平衡。
【分析解答】
将带正电的物体靠近A,静电平衡后,A,B,C三球达到静电平衡,C球带正电,A球带负电,B球不带电。当将带正电的C球移走后,A,B两球上的静电平衡被打破,B球右端电子在左端正电的物体的电场的作用下向A运动,形成新的附加电场,直到与外电场重新平衡时为止。此时B球带正电,A球所带负电将比C球移走前多。依次将C,B,A移走,C球带正电,B球带少量正电,A球带负电,且A球带电量比C球带电量多。
|QA|=|QB|+|QC|
【评析】
在学习牛顿第二定律时,当外力发生变化时,加速度就要发生变化。这种分析方法不仅适用于力学知识,而且也适用于电学知识,本题中移去C球,电场发生了变化,电场力相应的发生了变化,要重新对物理过程进行分析,而不能照搬原来的结论。

例11 如图8-10所示,当带电体A靠近一个绝缘导体B时,由于静电感应,B两端感应出等量异种电荷。将B的左端接地,绝缘导体B带何种电荷?
【错解】
对于绝缘体B,由于静电感应左端带负电,右端带正电。左端接地,左端电荷被导走,导体B带正电。
【错解原因】
将导体B孤立考虑,左端带负电,右端带正电,左端接地后左边电势比地电势低,所以负电荷将从电势低处移到电势高处。即绝缘体B上负电荷被导走。
【分析解答】
因为导体B处于正电荷所形成的电场中,而正电荷所形成的电场电势处处为正,所以导体B的电势是正的,UB>U地;而负电荷在电场力的作用下总是从低电势向高电势运动,B左端接地,使地球中的负电荷(电子)沿电场线反方向进入高电势B导体的右端与正电荷中和,所以B导体将带负电荷。
例12 如图8-11所示,质量为m,带电量为q的粒子,以初速度v0,从A点竖直向上射入真空中的沿水平方向的匀强电场中,粒子通过电场中B点时,速率vB=2v0,方向与电场的方向一致,则A,B两点的电势差为:
【错解】
带电粒子在电场中运动,一般不考虑带电粒子的重力,根据动能定理,电场力所做的功等于带电粒子动能的增量,电势差等于动能增量与电量Q的比值,应选D。
【错解原因】
带电粒子在电场中运动,一般不考虑带电粒子的重力,则粒子在竖直方向将保持有速度v0,粒子通过B点时不可能有与电场方向一致的2v0,根据粒子有沿场强方向的速度2v0,则必是重力作用使竖直向上的速度变为零。如一定不考虑粒子重力,这只有在电场无限大,带电粒子受电场力的作用,在电场方向上的速度相比可忽略不计的极限状态,且速度沿电场方向才能成立。而本题中v0与vB相比不能忽略不计,因此本题应考虑带电粒子的重力。
【分析解答】
在竖直方向做匀减速直线运动2gh=v02①
根据动能定理
【评析】
根据初、末速度或者运动轨迹判断物体的受力情况是解决与运动关系问题的基本功。即使在电学中,带电粒子的运动同样也要应用这个基本功。通过这样一些题目的训练,多积累这方面的经验,非常必要。
例13 在边长为30cm的正三角形的两个顶点A,B上各放一个带电小球,其中Q1=4×10-6 Q2=-4×10-6C,求它们在三角形另一顶点C处所产生的电场强度。
【错解】
C点的电场强度为Q1,Q2各自产生的场强之和,由点电荷的场强公式,
∴E=E1+E2=0
【错解原因】
认为C点处的场强是Q1,Q2两点电荷分别在C点的场强的代数和。
【分析解答】
计算电场强度时,应先计算它的数值,电量的正负号不要代入公式中,然后根据电场源的电性判断场强的方向,用平行四边形法求得合矢量,就可以得出答案。
由场强公式得:
C点的场强为E1,E2的矢量和,由图8-12可知,E,E1,E2组成一个等边三角形,大小相同,∴E2=4×105(N/C)方向与AB边平行。
例14 置于真空中的两块带电的金属板,相距1cm,面积均为10cm2,带电量分别为Q1=2×10-8C,Q2=-2×10-8C,若在两板之间的中点放一个电量q=5×10-9C的点电荷,求金属板对点电荷的作用力是多大?
【错解】
点电荷受到两板带电荷的作用力,此二力大小相等,方向相同,由
【错解原因】
库仑定律只适用于点电荷间相互作用,本题中两个带电金属板面积较大,相距较近,不能再看作是点电荷,应用库仑定律求解就错了。
【正确解答】
两个平行带电板相距很近,其间形成匀强电场,电场中的点电荷受到电场力的作用。
【评析】
如果以为把物理解题当作算算术,只要代入公式就完事大吉。那就走入了学习物理的误区。
例15 如图8-14,光滑平面上固定金属小球A,用长l0的绝缘弹簧将A与另一个金属小球B连接,让它们带上等量同种电荷,弹簧伸长量为x1,若两球电量各漏掉一半,弹簧伸长量变为x2,则有:( )
【错解】
故选B
【错解原因】
错解只注意到电荷电量改变,忽略了两者距离也随之变化,导致错误。
【分析解答】
由题意画示意图,B球先后平衡,于是有
【评析】
r常指弹簧形变后的总长度(两电荷间距离)。
例16 有两个带电量相等的平行板电容器A和B,它们的正对面积之比SA∶SB=3∶1,板长之比∶lA∶lB=2∶1,两板距离之比dA∶dB=4∶1,两个电子以相同的初速度沿与场强垂直的方向分别射入两电容器的匀强电场中,并顺利穿过电场,求两电子穿越电场的偏移距离之比。
【错解】
【错解原因】
把电容器的电压看成是由充电电量和两板正对面积决定而忽视了板间距离对电压的影响,所以电压比和偏离比都搞错了。
【分析解答】
【评析】
高考中本题只能作为一道选择题(或填空题)出现在试卷上。很多考生为了腾出时间做大题,急急忙忙不做公式推导,直接用数字计算导致思考问题不全面,以至会做的题目得不到分。同时按部就班解题,养成比较好的解题习惯,考试时就会处变不惊,稳中求准,稳中求快。
例17 如图8-15所示,长为l的绝缘细线,一端悬于O点,另一端连接一质量为m的带负电小球,置于水平向右的匀强电场中,在O点
向右水平拉直后从静止释放,细线碰到钉子后要使小球刚好饶钉子O′在竖直平面内作圆周运动,求OO′长度。
【错解】
摆球从A落下经B到C的过程中受到重力G,绳子的拉力T和电场力F电三个力的作用,并且重力和电场力做功,拉力不做功,由动能定理
摆球到达最低点时,摆线碰到钉子O′后,若要小球刚好绕钉子O′在竖直平面内做圆周运动,如图8-16。则在最高点D应满足:
从C到D的过程中,只有重力做功(负功),由机械能守恒定律
【错解原因】
考生以前做过不少“在重力场中释放摆球。摆球沿圆弧线运动的习题”。受到这道题思维定势的影响,没能分析出本题的摆球是在重力场和电场叠加场中运动。小球同时受到重力和电场力的作用,这两个力对摆球运动轨迹都有影响。受“最高点”就是几何上的最高点的思维定势的影响,没能分析清楚物理意义上的“最高点”含义。在重力场中应是重力方向上物体运动轨迹的最高点,恰好是几何意义上的最高点。而本题中,“最高点”则是重力与电场力的合力方向上摆球运动的轨迹的最高点。
【正确解答】
本题是一个摆在重力场和电场的叠加场中的运动问题,由于重力场和电场力做功都与路径无关,因此可以把两个场叠加起来看成一个等效力场来处理,如图8-17所示,
∴θ=60°。
开始时,摆球在合力F的作用下沿力的方向作匀加速直线运动,从A点运动到B点,由图8-17可知,△AOB为等边三角形,则摆球从A到B,在等效力场中,由能量守恒定律得:
在B点处,由于在极短的时间内细线被拉紧,摆球受到细线拉力的冲量作用,法向分量v2变为零,切向分量
接着摆球以v1为初速度沿圆弧BC做变速圆周运动,碰到钉子O′后,在竖直平面内做圆周运动,在等效力场中,过点O′做合力F的平行线与圆的交点为Q,即为摆球绕O′点做圆周运动的“最高点”,在Q点应满足
过O点做OP⊥AB取OP为等势面,在等效力场中,根据能量守恒定律得:
【评析】
用等效的观点解决陌生的问题,能收到事半功倍的效果。然而等效是有条件的。在学习交流电的有效值与最大值的关系时,我们在有发热相同的条件将一个直流电的电压(电流)等效于一个交流电。本题中,把两个场叠加成一个等效的场,前提条件是两个力做功都与路径无关。
例18 在平行板电容器之间有匀强电场,一带电粒子以速度v垂直电场线射入电场,在穿越电场的过程中,粒子的动能由Ek增加到2Ek,若这个带电粒子以速度2v垂直进入该电场,则粒子穿出电场时的动能为多少?
【错解】
设粒子的的质量m,带电量为q,初速度v;匀强电场为E,在y方向的位移为y,如图8—18所示。
【错解原因】
认为两次射入的在Y轴上的偏移量相同。实际上,由于水平速度增大带电粒子在电场中的运动时间变短。在Y轴上的偏移量变小。
【分析解答】
建立直角坐标系,初速度方向为x轴方向,垂直于速度方向为y轴方向。设粒子的的质量m,带电量为q,初速度v;匀强电场为E,在y方向的位移为y。速度为2v时通过匀强电场的偏移量为y′,平行板板长为l。
由于带电粒子垂直于匀强电场射入,粒子做类似平抛运动。
两次入射带电粒子的偏移量之比为
【评析】
当初始条件发生变化时,应该按照正确的解题步骤,从头再分析一遍。而不是想当然地把上一问的结论照搬到下一问来。由此可见,严格地按照解题的基本步骤进行操作,能保证解题的准确性,提高效率。其原因是操作步骤是从应用规律的需要归纳出来的。
例19 A,B两块平行带电金属板,A板带负电,B板带正电,并与大地相连接,P为两板间一点。若将一块玻璃板插入A,B两板间,则P点电势将怎样变化。
【错解】
UpB=Up-UB=Ed
电常数ε增大,电场强度减小,导致Up下降。
【错解原因】
没有按照题意画出示意图,对题意的理解有误。没有按照电势差的定义来判断PB两点间电势差的正负。
【分析解答】
按照题意作出示意图,画出电场线,图8-19所示。
我们知道电场线与等势面间的关系:“电势沿着电场线的方向降落”所以UpB=Up-UB<0,B板接地UB=0
UBp=UB-Up=0-Up
Up=-Ed
常数ε增大,电场强度减小,导致Up上升。
【评析】
如何理解PB间的电势差减小,P点的电势反倒升高呢?请注意,B板接地Up<0,PB间的电势差减小意味着Up比零电势降落得少了。其电势反倒升高了。
例20 如图8-20电路中,电键K1,K2,K3,K4均闭合,在平行板电容器C的极板间悬浮着一带电油滴P,
(1)若断开K1,则P将__________;
(2)若断开K2,则P将________;
(3)若断开K3,则P将_________;
(4)若断开K4,则P将_______。
【常见错解】
(1)若断开K1,由于R1被断开,R2上的电压将增高,使得电容器两端电压下降,则P将向下加速运动。
(2)若断开K2,由于R3被断开,R2上的电压将增高,使得电容器两端电压下降,则P将向下加速运动。
(3)若断开K3,由于电源被断开,R2上的电压将不变,使得电容器两端电压不变,则P将继续悬浮不动。
(4)若断开K4,由于电源被断开,R2上的电压将变为零,使得电容器两端电压下降,则P将加速下降。
【错解原因】
上述四个答案都不对的原因是对电容器充放电的物理过程不清楚。尤其是充电完毕后,电路有哪些特点不清楚。
【分析解答】
电容器充电完毕后,电容器所在支路的电流为零。电容器两端的电压与它所并联的两点的电压相等。本题中四个开关都闭合时,有R1,R2两端的电压为零,即R1,R2两端等势。电容器两端的电压与R3两端电压相等。
(1)若断开K1,虽然R1被断开,但是R2两端电压仍为零,电容器两端电压保持不变,则P将继续悬浮不动
(2)若断开K2,由于R3被断开,电路再次达到稳定时,电容器两端电压将升高至路端电压R2上的电压仍为零,使得电容器两端电压升高,则P将向上加速运动。
(3)若断开K3,由于电源被断开,电容器两端电压存在一个回路,电容器将放电至极板两端电压为零,P将加速下降。
(4)K4断开,电容器两端断开,电量不变,电压不变,场强不变,P将继续悬浮不动。
【评析】
在解决电容器与直流电路相结合的题目时,要弄清楚电路的结构,还要会用静电场电势的观点分析电路,寻找等势点简化电路。
例21 一个质量为m,带有电荷-q的小物块,可在水平轨道Ox上运动,O端有一与轨道垂直的固定墙,轨道处于匀强电场中,场强大小为E,方向沿Ox轴正方向,如图8-21所示,小物体以初速v0从x0沿Ox轨道运动,运动时受到大小不变的摩擦力f作用,且f<qE。设小物体与墙碰撞时不损失机械能且电量保持不变。求它在停止运动前所通过的总路程s。
【错解】
错解一:物块向右做匀减速运动到停止,有
错解二:小物块向左运动与墙壁碰撞后返回直到停止,有W合=△Ek,得
【错解原因】
错误的要害在于没有领会题中所给的条件f>Eq的含义。当物块初速度向右时,先减速到零,由于f<Eq物块不可能静止,它将向左加速运动,撞墙后又向右运动,如此往复直到最终停止在轨道的O端。初速度向左也是如此。
【分析解答】
设小物块从开始运动到停止在O处的往复运动过程中位移为x0,往返路程为s。根据动能定理有
【评析】
在高考试卷所检查的能力中,最基本的能力是理解能力。读懂题目的文字并不困难,难的是要抓住关键词语或词句,准确地在头脑中再现题目所叙述的实际物理过程。常见的关键词语有:“光滑平面、缓慢提升(移动)、伸长、伸长到、轻弹簧、恰好通过最高点等”这个工作需要同学们平时多积累。并且在做新情境(陌生题)题时有意识地从基本分析方法入手,按照解题的规范一步一步做,找出解题的关键点来。提高自己的应变能力。
例22 1000eV的电子流在两极板中央斜向上方进入匀强电场,电场方向竖直向上,它的初速度与水平方向夹角为30°,如图8-22。为了使电子不打到上面的金属板上,应该在两金属板上加多大电压U?
【错解】
电子流在匀强电场中做类似斜抛运动,设进入电场时初速度为v0,
因为电子流在电场中受到竖直向下电场力作用,动能减少。欲使电子刚好打不到金属板上有Vr=0,此时电子流动能
【错解原因】
电子流在电场中受到电场力作用,电场力对电子做功We=Fes=eEs其中s必是力的方向上位移,即d/2,所以We=eU,U是对应沿d方向电势降落。则电子从C到A,应对应We=eUAC,故上面解法是错误的。
【分析解答】
电子流在匀强电场中做类似斜抛运动,欲使电子刚好不打金属板上,则必须使电子在d/2内竖直方向分速度减小到零,设此时加在两板间的电压为U,在电子流由C到A途中,
电场力做功We=EUAC,由动能定理
至少应加500V电压,电子才打不到上面金属板上。
【评析】
动能定理是标量关系式。不能把应用牛顿定律解题方法与运用动能定理解题方法混为一谈。
例23 如图8-23,一个电子以速度v0=6.0×106m/s和仰角α=45°从带电平行板电容器的下板边缘向上板飞行。两板间场强E=2.0×104V/m,方向自下向上。若板间距离d=2.0×10-2m,板长L=10cm,问此电子能否从下板射至上板?它将击中极板的什么地方?
【错解】
规定平行极板方向为x轴方向;垂直极板方向为y轴方向,将电子的运动分解到坐标轴方向上。由于重力远小于电场力可忽略不计,则y方向上电子在电场力作用下做匀减速运动,速度最后减小到零。
∵vt2-v02=2as
y=d=s vt=0
即电子刚好击中上板,击中点离出发点的水平位移为3.99×10-2(m)。
【错解原因】
为d,(击中了上板)再求y为多少,就犯了循环论证的错误,修改了原题的已知条件。
【分析解答】
应先计算y方向的实际最大位移,再与d进行比较判断。
由于ym<d,所以电子不能射至上板。
【评析】因此电子将做一种抛物线运动,最后落在下板上,落点与出发点相距1.03cm。
斜抛问题一般不要求考生掌握用运动学方法求解。用运动的合成分解的思想解此题,也不是多么困难的事,只要按照运动的实际情况把斜抛分解为垂直于电场方向上的的匀速直线运动,沿电场方向上的坚直上抛运动两个分运动。就可以解决问题。
第九章 稳恒电流错题集

一、主要内容
本章内容包括电流、产生持续电流的条件、电阻、电压、电动势、内电阻、路端电压、电功、电功率等基本概念,以及电阻串并联的特点、欧姆定律、电阻定律、闭合电路的欧姆定律、焦耳定律、串联电路的分压作用、并联电路的分流作用等规律。
二、基本方法
本章涉及到的基本方法有运用电路分析法画出等效电路图,掌握电路在不同连接方式下结构特点,进而分析能量分配关系是最重要的方法;注意理想化模型与非理想化模型的区别与联系;熟练运用逻辑推理方法,分析局部电路与整体电路的关系
三、错解分析
在本章知识应用的过程中,初学者常犯的错误主要表现在:不对电路进行分析就照搬旧的解题套路乱套公式;逻辑推理时没有逐步展开,企图走“捷径”;造成思维“短路”;对含有电容器的问题忽略了动态变化过程的分析。
例1 如图9-1所示电路,已知电源电动势ε=6.3V,内电阻r=0.5Ω,固定电阻R1=2Ω,R2=3Ω,R3是阻值为5Ω的滑动变阻器。按下电键K,调节滑动变阻器的触点,求通过电源的电流范围。
【错解】
将滑动触头滑至左端,R3与R1串联再与R2并联,外电阻
再将滑动触头滑至右端R3与R2串联再与R1并联,外电阻
【错解原因】
由于平时实验,常常用滑动变阻器作限流用(滑动变阻器与用电器串联)当滑动头移到两头时,通过用电器的电流将最大或最小。以至给人以一种思维定势:不分具体电路,只要电路中有滑动变阻器,滑动头在它的两头,通过的电流是最大或最小。
【分析解答】
将图9—1化简成图9-2。外电路的结构是R′与R2串联、(R3-R′)与R1串联,然后这两串电阻并联。要使通过电路中电流最大,外电阻应当最小,要使通过电源的电流最小,外电阻应当最大。设R3中与R2串联的那部分电阻为R′,外电阻R为
因为,两数和为定值,两数相等时其积最大,两数差值越大其积越小。
当R2+R′=R1+R3-R′时,R最大,解得
因为R1=2Ω<R2=3Ω,所以当变阻器滑动到靠近R1端点时两部分电阻差值最大。此时刻外电阻R最小。
通过电源的电流范围是2.1A到3A。
【评析】
不同的电路结构对应着不同的能量分配状态。电路分析的重要性有如力学中的受力分析。画出不同状态下的电路图,运用电阻串并联的规律求出总电阻的阻值或阻值变化表达式是解电路的首要工作。
例2 在如图9-3所示电路中,R1=390Ω,R2=230Ω,电源内电阻r=50Ω,当K合在1时,电压表的读数为80V;当K合在2时,电压表的读数为U1=72V,电流表的读数为I1=0.18A,求:(1)电源的电动势(2)当K合在3时,两电表的读数。
【错解】
(1)因为外电路开路时,电源的路端电压等于电源的电动势,所以ε=U断=80V;
【错解原因】
上述解答有一个错误的“替代假设”:电路中的电流表、电压表都是理想的电表。事实上,问题并非如此简单。如果进一步分析K合在2时的情况就会发现矛盾:I1R1=0.18×390=70.2(V)≠80V,这就表明,电路中的电流表和电压表并非理想的电表。
【分析解答】
(1)由题意无法判断电压表、电流表是理想电表。设RA、Rv分别为电压表、电流表的内阻,R′为电流表与电阻器R1串联后的电阻,R″为电流表与电阻器R2串联的电阻。则K合在2时:
由上述两式解得:R1=400Ωε=90V
【评析】
本题告诉我们,有些题目的已知条件隐藏得很深。仅从文字的表面是看不出来的。只好通过试算的方法判断。判断无误再继续进行解题。
例3 如图9-4所示,ε1=3V,r1=0.5Ω,R1=R2=5.5Ω,平行板电容器的两板距离d=1cm,当电键K接通时极板中的一个质量m=4×10-3g,电量为q=1.0×10-7C的带电微粒恰好处于静止状态。求:(1)K断开后,微粒向什么方向运动,加速度多大?(2)若电容为1000pF,K断开后,有多少电量的电荷流过R2?
【错解】

当电键K接通电路稳定时、电源ε1和ε2都给电容器极板充电,所以充电电压U=ε1+ε2。
带电粒子处于平衡状态,则所受合力为零,
F-mg=0
ε2=U-ε1=1(v)
当电键K断开后,电容器上只有电源 给它充电,U′=ε2。
即带电粒子将以7.5m/s2的加速度向下做匀加速运动。
又 Q1=CU=103×10-12×4=4×10-9C
Q′=CU′=103×10-12×1=1×10-9C
△Q=Q-Q′=3×10-9C
极板上电量减少3×10-9C,也即K断开后,有电量为3×10-9C的电荷从R2由下至上流过。

【错解原因】

在直流电路中,如果串联或并联了电容器应该注意,在与电容器串联的电路中没有电流,所以电阻不起降低电压作用(如R2),但电池、电容两端可能出现电势差,如果电容器与电路并联,电路中有电流通过。电容器两端的充电电压不是电源电动势ε,而是路端电压U。

【分析解答】

(1)当K接通电路稳定时,等效电路图如图9-5所示。

ε1、r1和R1形成闭合回路,A,B两点间的电压为:
电容器中带电粒子处于平衡状态,则所受合力为零,
F-mg=0
在B,R2,ε2,C,A支路中没有电流,R2两端等势将其简化,U+ε2=UAB,ε2=U-UAB=1.25V
当K断开电路再次达到稳定后,回路中无电流电路结构为图9-6所示。电容器两端电压U′=ε2=1.25V
即带电粒子将以6.875m/s2的加速度向下做匀加速运动。
(2)K接通时,电容器带电量为Q=CU=4×1O-9C
K断开时,电容器带电量为Q′=CU′=1.2×10-9(C)
△Q=Q—Q′=2.75×10-9C
有总量为2.75×10-9(C)的电子从R2由下至上流过。

【评析】

本题考查学生对电容器充放电物理过程定性了解程度,以及对充电完毕后电容所在支路的电流电压状态是否清楚。学生应该知道电容器充电时,随着电容器内部电场的建立,充电电流会越来越小,电容器两极板间电压(电势差)越来越大。当电容器两端电压与电容器所并联支路电压相等时充电过程结束,此时电容器所在的支路电流为零。
根据这个特点学生应该会用等势的方法将两端等势的电阻简化,画出等效电路图,如本题中的图9-5,图9-6,进而用电路知识解决问题。
例4 如图9-7所示,电源电动势ε=9V,内电阻r=0.5Ω,电阻R1=5.0Ω、R2=3.5Ω、R3=6.0Ω、R4=3.0Ω,电容C=2.0μF。当电键K由a与接触到与b接触通过R3的电量是多少?

【错解】

K接a时,由图9-8可知
流过R3的电量为△Q=QC-Q′C =3×10-6(C)

【错解原因】

没有对电容器的充电放电过程做深入分析。图9-8图中电容器的上极板的电势高,图9-9中电容器的下极板的电势高。电容器经历了先放电后充电的过程。经过R3的电量应是两次充电电量之和。

【分析解答】

K接a时,由图9-8可知
此时电容器带电量QC=CU1=I×10-5(C)
K接b时,由图9-9可知
此时电容器带电量Q′C=CU1=0.7×10-5(C)
流过R3的电量为△Q=QC+Q′C=1.7×10-5(C)

【评析】

对于电容电量变化的问题,还要注意极板电性的正负。要分析清电容器两端的电势高低,分析全过程电势变化。
例5 在电源电压不变的情况下,为使正常工作的电热器在单位时间内产生的热量增加一倍,下列措施可行的是
( )
A、剪去一半的电阻丝
B、并联一根相同的电阻丝
C、串联一根相同的电阻丝
D、使电热器两端的电压增大一任

【错解】

为原来的一半,所以选A、B。

【错解原因】

忽略了每根电阻丝都有一定的额定功率这一隐含条件。

【分析解答】

将电阻丝剪去一半后,其额定功率减小一半,虽然这样做在理论上满足使热量增加一倍的要求,但由于此时电阻丝实际功率远远大于额定功率,因此电阻丝将被烧坏。故只能选B。

【评析】

考试题与生产、生活问题相结合是今后考试题的出题方向。本题除了需要满足电流、电压条件之外,还必须满足功率条件:不能超过用电器的额定功率。
例6 如图9-10所示的电路中已知电源电动势ε=36V,内电阻r=2Ω,R1=20Ω,每盏灯额定功率都是2W,额定电压也相同。当K闭合调到R2=14Ω时,两灯都正常发光;当K断开后为使L2仍正常发光,求R2应调到何值?

【错解】

设所求电阻R′2,当灯L1和L2都正常发光时,即通过灯的电流达额定电流I。

【错解原因】

分析电路时应注意哪些是恒量,哪些是变量。图9-10电路中电源电动势ε是恒量,灯L1和L2正常发光时,加在灯两端电压和通过每个灯的电流是额定的。错解中对电键K闭合和断开两种情况,电路结构差异没有具体分析,此时随灯所在支路电流强度不变,两种情况干路电流强度是不同的,错误地将干路电流强度认为不变,导致了错误的结果。

【分析解答】

解法一:设所求阻值R′2,当灯L1和L2正常发光时,加在灯两端电压力额定电压UL。
当K闭合时,ε1=UL+I1(R1+r+R2)
当K断开时,ε2=UL+I2(R1+r+R′2),
又 ∵ε1=ε2=ε I1=2I2=2I,(I为额定电流)
得ε= UL+2I(R1+r+R2) ①
ε=USL+I(R1+r+R′2) ②
①-②I(R1+r+2R2-R2′)=0 但I≠0,∴R1+r+2R2=R′2即R′2=20+2+2×14=50Ω
解法二:设所求阻值R′2,当灯L1和L2正常发光时,加在灯两端电压为额定电压UL,由串联电路电压分析可得:

【评析】

电路中的局部电路(开关的通断、变阻器的阻值变化等)发生变化必然会引起干路电流的变化,进而引起局部电流电压的变化。应当牢记当电路发生变化后要对电路重新进行分析。
例7 如图9-11所示,电源电压保持不变,变阻器R1的最大值大于R2的阻值,在滑片P自右向左滑动过程中,R1的电功率如何变化?

【错解】

采用“端值法”,当P移至最左端时,R1=0,则Rl消耗的电功率变为0,由此可知,当滑片P自右向左滑动过程中,R1的电功率是变小的。

【错解原因】

由于题中R1>R2,所以用端值法只假设R1=0是不够的。

【分析解答】

因此,在这两种情况时,R1的电功率都是P1<U2/4R,且不难看出,Rl与R2差值越大,P1越小于U2/4R。
综上所述,本题答案应是滑片P自右向左移动时,Rl的电功率逐渐变大;当R1=R2时R1的电功率最大;继续沿此方向移动P时,R1的电功率逐渐变小。

【评析】

电路中某电阻消耗的功率,不止是由本身电阻决定,还应由电路的结构和描述电路的各个物理量决定。求功率的公式中出现二次函数,二次函数的变化不一定单调变化的,所以在求解这一类问题时,千万要作定量计算或者运用图像进行分析。
例8 如图9-12所示电路,当电键K依次接a和b的位置时,在(1)R1>R2(2) Rl=R2(3) R1<R2三种情况时,R1、R2上消耗的电功率哪个大?

【错解】

(l)根据P=I2R可知,当R1>R2时,P1>P2;当R1=R2时,P1=P2;当Rl<R2时,P1>P2。
当R1>R2时,P1<P2;当R1=R2时,P1=P2;当R1<R2时,P1>P2。

【错解原因】

错误在于认为电路改变时其路端电压保持不变,U1=U2,应该分析当电键K接不同位置时,电路的结构不同,电路结构改变但ε,r不变。

【分析解答】

当电键K接不同位置时,电路的结构不同。
(l)当R1<R2时,若r2=R1R2 P1-P2=0所以P1=P2;若r2<R1R2 P1-P2<0所以 P1<P2;若r2> RlR2 P1-P2>0所以P1>P2
(2)当R1>R2时,若r2=R1R2 P1-P2=0,所以P1=P2;若r2<R1R2P1-P2>0所以 P1>P2;若r2> R1R2

【评析】

解决电路问题先审题,审题过后有的同学头脑中出现许多公式,他从中选择合适的公式,有的同学则从头脑中搜寻以前做过的题目,看有没有与本题相似的题目,如果有相似的题目,就把那道题的解题方法照搬过来。这些方法不一定错,但是一旦问题比较复杂,或者题目叙述的是一个陌生的物理情境,这些方法就不好用了。所以,规范化的解题步骤是必不可少的。
例9 如图9-13所示电路中,r是电源的内阻,R1和R2是外电路中的电阻,如果用Pr,P1和P2分别表示电阻r,R1,R2上所消耗的功率,当R1=R2=r时,Pr∶P1∶P2等于
[ ]
A、1∶l∶1 B、2∶1∶1
C、1∶4∶4 D、4∶l∶1

【错解】

因为R1=R2=r,r与R1,R2并联,它们电压相同,

【错解原因】

认为电源的两端就是外电路的两端,所以内外电阻是并联关系,即认为r与R1,R2并联,Ur=U1-U2,这一看法是错误的,Ur不等于U1,Ur=ε-U1。

【分析解答】

在图9-13电路中,内电阻上通过的电流与外电路的总电流相同,内电阻与外电阻是串联关系,(不能认为内电阻与外电阻并联)但R1与R2是并联的,因R1=R2,则I1=I2=I,
Ir=I1+I2=2I。
Pr∶P1∶P2=Ir2r∶I12R1∶I22R2∶=4∶1∶1。,所以是正确的。

【评析】

单凭直觉就对电路的串并联关系下结论,太草率了。还是要通过电流的分合,或电势的高低变化来做电路分析。
例10 如图9-14所示,
已知电源电动势ε=20V,内阻r=1Ω,当接入固定电阻R=4Ω时,电路中标有“3V 4.5W”的灯泡L和内阻r′=0.5Ω的小型直流电动机恰能正常工作,求(1)电路中的电流强度?(2)电动机的额定工作电压?(3)电源的总功率?

【错解】

由灯泡的额定电压和额定功率可求得灯泡的电阻
串联电路中电路中的电流强度
电动机额定工作电压U=I′r=2.7×0.5=l.35(V)
电源总功率P=Iε=2.7×20=54(W)

【错解原因】

此电路是非纯电阻电路,闭合电路欧姆定律ε=IR总不适用,所以电

【分析解答】

(1)串联电路中灯L正常发光,电动机正常工作,所以电路中电流强度为灯L的额定电流。
电路中电流强度I=1.5A。
(2)电路中的电动机是非纯电阻电路。根据能量守恒,电路中
ε=UR+UL+Ur+Um
Um=ε-UR-UL-Ur=ε-I(R+RL+r)=20-1.5×(2+4+1)=9.5
(3)电源总功率P总=Iε=1.5×20=30(W)。

【评析】

要从能量转化与守恒的高度来认识电路的作用。一个闭合电路中,电源将非静电能转化为电能,内外电路又将电能转化为其他形式的能。ε=U内+U外则是反映了这个过程中的能量守恒的关系。
例11 电动机M和电灯L并联之后接在直流电源上,电动机内阻r′=1Ω,电灯灯丝电阻R=10Ω,电源电动势ε=12V,内阻r=1Q,当电压表读数为10V时,求电动机对外输出的机械功率。

【错解】

流与其电阻成反比,

【错解原因】

上述错解过程中有两处致命的错误:一是将电动机视为纯电阻处理了,电动机不属于纯电阻,而是将电能转化为机械能,错解中利用了并联电路中支路电流与电阻成反比的结论是不恰当的,因为该结论只适用于纯电阻电路,二是不明确电动机的输入功率PM入与输出功率PM出的区别,IM2r′是电动机内阻发热功率。三者的关系是:PM入=PM出+IM2r′。

【分析解答】

根据题意画出电路图,如图9-15所示。由全电路欧姆定律ε= U+Ir得出干路电流
由已知条件可知:流过灯泡的电流
电动机的输出功率的另一种求法:以全电路为研究对象,从能量转化和守恒的观点出发P源=P路。本题中电路中消耗电能的有:内电阻、灯泡和电动机,电动机消耗的电能又可分为电动机输出的机械能和电动机自身消耗的内能。即Iε=I2r+IL2R+PM出+IM2r′。
PM出=Iε-(I2r+IL2R++IM2r′)=9(W)

【评析】

站在能量转化与守恒的高度看电路各个部分的作用。就可以从全局的角度把握一道题的解题思路,就能比较清醒地分清公式规律的适用范围和条件。
例12 如图9-16,外电路由一个可变电阻R和一个固定电阻R0串联构成,电源电动势为ε,电源内阻为r,
问:R调到什么时候,R0上将得到最大功率。

【错解】

把可变电阻R看成电源内阻的一部分,即电源内阻r′=r+R。利用电源输出功率最大的条件是R=r′得R0=R+r,即R=R0-r,所以把可变电阻调到R=R2-r时,电路中R0上得到最大功率,其大小为

【错解】

可变电阻R上得到的功率,决定于可变电阻的电流和电压,也可以用电源输出功率最大时的条件,内外电阻相同时电源有最大输出功率来计算。但是题目要求讨论定值电阻R0上的输出功率,则不能生搬硬套。定值电阻R0上的功率,决定于流过电阻R0的电流强,这与讨论可变电阻R上的功率不同。

【分析解答】
电流经过电阻R0,电流能转换成内能,R0上功率决定于电流强度大小和电阻值,即P=I2R0,所以当电流强度最大时,R0上得到最大功率。由纯电阻的闭合电路欧姆定律,有
固定电阻R0上有最大输出功率,其大小为

【评析】

在讨论物理问题时选择研究对象是重要的一环。研究对象选错了,就要犯张冠李戴的错误。明明题目中要我们计算定值电阻的功率,有人却套用滑动变阻器的结论。所以认真审题找出研究对象,也是提高理解能力的具体操作步骤。
例13 输电线的电阻共计10Ω,输送的电功率是100kw,用400V的低压送电,输电线上发热损失的功率是多少kw?改用10kV的高压送电,发热功率损失又是多少kw?

【错解】


【错解原因】

错解一是对欧姆定律使用不当,输送电压是加在输电线电阻和负载上的,如果把它考虑成输电线上的电压求电流强度当然就错了。错解二注意到了负载的作用,所求出的损失功率P1是正确的,然而在高压送电电路中,负载都是使用了变压器而错解二把它当作纯电阻使P2解错。

【分析解答】

输送电功率100kw,用400V低压送电,输电线上电流
输电线上损失功率
若用10kV高压送电输电线上电流
输电线上损失功率P2=I22r=102×1=0.1(kw)

【评析】

一道很简单的题目做错了,有些人将错解原因归结为:粗心、看错了题目。其实真正的原因是解题不规范。如果老老实实地画出电路图标出各个物理量,按图索骥就可以避免所谓的“粗心”的错误。
例14 把一个“10V 2.0W”的用电器A(纯电阻)接到某一电动势和内阻都不变的电源上,用电器A实际消耗的功率是2.0W,换上另一个“ 10V 5.0W”的用电器B(纯电阻)接到这一电源上,用电器B实际消耗的电功率有没有可能反而小于2.0W?你如果认为不可能,试说明理由,如果认为可能,试求出用电器B实际消耗的电功率小于2.0W的条件(设电阻不随温度改变)

【错解】

将“ 10V 2.0W”的用电器与电源连接,用电器正常工作说明用电器两端电压为10V,现将“ 10V 5.0W”的用电器B与电源连接,用电器两端电压是10V,B也能正常工作,实际功率是5.0W,所以用电器的实际功率不会小于2.0W。

【错解原因】

把路端电压与电源电动势混为一谈,认为路端电压是恒定的,不随外电路改变而改变。

【分析解答】

越大,U也越大,所以与ε不同,U不是恒定的。
以当B连入时,用电器两端的电压将小于10V,它消耗的实际功率将小
述条件时,B的实际功率小于2.0W。

【评析】

根据电源最大输出功率的条件做出输出功率与外电阻图(P-R图如图9-17所示)做定性分析,也可以得到同样的结果。由题意可知RA接入电路时,若电源的输出功率达到最大输出功率,则RB接入电路时,电源的输出功率肯定小于最大输出功率2W。若电源的输出功率没有达到最大输出功率,RB接入电路时,电源的输出功率有可能小于RA接入电路时输出功率2W。
例15 有四个电源,电动势均为8V,内阻分别为1Ω、2Ω、4Ω、8Ω,今要对R=2Ω的电阻供电,问选择内阻为多大的电源才能使R上获得的功率最大?
A、1Ω B、2Ω
C、4Ω D、 8Ω

【错解】

依“外电阻等于内电阻(R=r)时,外电路上的电功率有最大值”可知,应选内阻2Ω的电源对R供电,故选B。
【错解分析】
上述错解的根源在于滥用结论。事实上,确定的电源有最大的输出功率和确定的外电路上获得最大功率的条件是不同的。“外电阻等于内电阻(R=r)时,外电路上的电功率有最大值”只适用于电源确定而外电阻可选择的此形,而本题实属外电阻确定而电源可选的情况,两者意义不同,不可混为一谈。

【分析解答】

P是r的单调减函数,所以就题设条件而言,r取1Ω时P有最大值,应选A。

【评析】

物理学的任何规律结论的成立都是有条件的,都有其适用范围。有的同学做题比较多,习惯于套用一些熟悉题目的解题路子。这种方法有它合理的一面,也有其造成危害的一面。关键是要掌握好“条件和范围”。
例16 图9-18所示,为用伏安法测量一个定值电阻阻值的实验所需要的器材实物图,器材规格如下:(1)待测电阻RX(约100Ω)(2)直流毫安表(量程0~10mA,内阻50Ω)(3)直流电压表(量程0~3V,内阻5kΩ)(4)直流电源(输出电压4V,允许最大电流1A)(5)滑动变阻器(阻值范围0~15Ω,允许最大电流1A)(6)电键一个,导线若干条。根据器材的规格和实验要求,在本题的实物图上连线。

【错解】

错解一:如图9-19所示,此种连法错在变阻器的右下接线柱和电源的负极之间少连了一条线,即使变阻器取最大值,通过电路的电流也超过了10mA,大于毫安表的量程。
错解二:如图9-20所示有两处不妥:①电压调节范围小;②电流过大。这种连法实际上与图9-19的错误是一样的。
错解三:如图9-21所示,此种连法是用伏安法测量,电路与变阻器由滑动触头并联,无论变阻器的阻值怎样变化,流过毫安表的电流
始终超过毫安表的量程,而且当滑动触头滑到最左端时,电源还有被短路的可能,故连接错误。
错解四:如图9-22所示,可见这种连法实际上与图9-21(变阻器取最大值时)的错误是一样的。
错解五:如图9-23所示,显然可见,当电键闭合时电源被短路,这是不允许的,连接错误。
错解六:如图9-24所示,电键闭合后电源被短路,滑到最右端时,电流超过毫安表的最大量程,故连接错误。
错解七:如图9-25,无论电键是否闭合,电源、变阻器回路始终是接通的,电键的位置连接错了。
连接上的原因是:在高中学习伏安法测电阻时,接触的多是将变阻器连接一个上接线柱和一个下接线柱,串连在电路中分压限流,因而在做此题时,采用了习惯连法,没有对器材的规格要求进行计算、分析。
(2)将毫安表内接错误,错误的症结是不了解系统误差产生的原因,也是没有对器材的规格进行具体分析。
(3)出现同时连接变阻器的两个上接线柱;电表的“+”、“-”接反;不在接线柱上连线,而是在连线上连线等,说明学生缺乏实验操作的规范化训练,或缺乏亲自动手做实验。

【分析解答】

用伏安法测电阻,首先要判明电流表应该内接还是外接,由题目所给器材规格来看,显然不满足RA<<Rx条件,而是满足Rv>>Rx条件,所以应采用外接法。若图9-26电路,当滑动触头P处于最左端,滑动变阻器为最大值时,由题设条件流过电流表的电流
超过安培表的量程。因此变阻器既应分压又应分流。
正确的连接图为图9-27所示。画图的关键是:毫安表需外接,变阻器接成分压电路。实验开始前将滑动变阻器的滑动触头滑至分压为零的位置。

【评析】

在设计实验过程时,要根据具体实验条件,灵活应用实验原理,改变实验方法。善于从习题中或所学的物理定律的推论中得出实验原理和方法。基本原则是不能是电表超过量程,测量误差尽可能小;不能使用电器超过其额定功率,结构上不能出现短路断路现象。
例17 如图9-28所示电路的三根导线中有一根是断的。电源电阻器R1·R2及另外两根导线都是好的。为了查出断导线,某学生想先用万用表的红表笔连接在电源的正极a,再将黑表笔分别连接在电阻器Rl的b端和R2的c端,并观察万用表指针的示数。在下列选挡中,符合操作规程的是:
[ ]
A.直流10V挡 B.直流0.5A挡
C.直流2.5V挡 D.欧姆挡

【错解】

如果电路连接正常,电路中的电流
测量的最大电压为U1=IR1=2V。可选A、C。
用欧姆挡可以直接测量回路中的电阻是否等于15Ω或者等于10Ω。

【错解原因】

选B的同学没有考虑R1与R2之间的导线断开的情况。选C的同学没有考虑到无论哪根导线断开,测得的电压都等于6V,大于2.5V。如选D的同学没有考虑到如果被测回路中有电源,欧姆表就可能被毁坏或读数不准。

【分析解答】

设万用表各挡都理想,忽略电源的内阻。选用不同功能档时,应画出电路图,至少在头脑中想清楚。
用电压挡测量时,由于电路断开(无论是从ab间断开,还是从R1与R2之间断开)电路中无电流,黑表笔与电源负极等电势。直流电压挡测量的数值是电源电动势ε=6V。所以A选项可行,C选项不行。
用电流挡测量时,假设ab间导线完好,而R1与R2之间导线断开,
B选项。
被测回路中有电源,欧姆表不能适用,排除D选项。

【评析】

本题考查学生的实验能力。还考察学生的逻辑思维能力。逻辑思维的基础是对电路结构的理解。养成正确的电路分析的习惯,处处受益。

第十章 磁场错题集

一、主要内容

本章内容包括磁感应强度、磁感线、磁通量、电流的磁场、安培力、洛仑兹力等基本概念,以及磁现象的电本质、安培定则、左手定则等规律。

二、基本方法

本章涉及到的基本方法有,运用空间想象力和磁感线将磁场的空间分布形象化是解决磁场问题的关键。运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况是将力学知识与磁场问题相结合的切入点。

三、错解分析

在本章知识应用的过程中,初学者常犯的错误主要表现在:不能准确地再现题目中所叙述的磁场的空间分布和带电粒子的运动轨迹:运用安培定则、左手定则判断磁场方向和载流导线、运动的带电粒子受力情况时出错;运用几何知识时出现错误;不善于分析多过程的物理问题。
例1 如图10-1所示,螺线管两端加上交流电压,沿着螺线管轴线方向有一电子射入,则该电子在螺线管内将做:
A.加速直线运动 B.匀速直线运动
C.匀速圆周运动 D.简谐运动
【错解】
错解一:螺线管两端加上交流电压,螺线管内有磁场,电子在磁场中要受到磁场力的作用,故选A。
错解二:螺线管两端加上了交流电压,螺线管内部有磁场,磁场方向周期性发生变化,电子在周期性变化的磁场中受到的力也发生周期性变化,而做往复运动。故选D。
【错解原因】
错解一、二的根本原因有二:一是对螺线管两端加上交流电压后,螺线管内部磁场大小和方向发生周期性变化的具体情况分析不清;二是没有搞清洛仑兹力f=Bqv的适用条件,而乱套公式。洛仑兹力的大小为f=Bqv的条件是运动电荷垂直射入磁场,当运动方向与B有夹角时,洛仑兹力f=Bqv sinθ,;当θ=0°或θ=180°时,运动电荷不受洛仑兹力作用。
【分析解答】
螺线管两端加上交流电压后,螺线管内部磁场大小和方向发生周期性变化,但始终与螺线管平行,沿着螺线管轴线方向射入的电子其运动方向与磁感线平行。沿轴线飞入的电子始终不受洛仑兹力而做匀速直线运动。
例2 如图10-2,条形磁铁平放于水平桌面上,在它的正中央上方固定一根直导线,导线与磁场垂直,现给导线中通以垂直于纸面向外的电流,则下列说法正确的是:
A.磁铁对桌面的压力减小
B.磁铁对桌面的压力增大
C.磁铁对桌面的压力不变
D.以上说法都不可能
【常见错解】
磁铁吸引导线而使磁铁导线对桌面有压力,选B。
【错解原因】
错解在选择研究对象做受力分析上出现问题,也没有用牛顿第三定律来分析导线对磁铁的反作用力作用到哪里。
【分析解答】
通电导线置于条形磁铁上方使通电导线置于磁场中如图10-3所示,由左手定则判断通电导线受到向下的安培力作用,同时由牛顿第三定律可知,力的作用是相互的,磁铁对通电导线有向下作用的同时,通电导线对磁铁有反作用力,作用在磁铁上,方向向上,如图10-4。对磁铁做受力分析,由于磁铁始终静止,无通电导线时,N=mg,有通电导线后N+F′=mg,N=mg-F′,磁铁对桌面压力减小,选A。
例3 如图10-5所示,水平放置的扁平条形磁铁,在磁铁的左端正上方有一线框,线框平面与磁铁垂直,当线框从左端正上方沿水平方向平移到右端正上方的过程中,穿过它的磁通量的变化是:
A.先减小后增大
B.始终减小
C.始终增大
D.先增大后减小
【错解】
条形磁铁的磁性两极强,故线框从磁极的一端移到另一端的过程中磁性由强到弱再到强,由磁通量计算公式可知Φ=B·S,线框面积不变,Φ与B成正比例变化,所以选A。
【错解分析】
做题时没有真正搞清磁通量的概念,脑子里未正确形成条形磁铁的磁力线空间分布的模型。因此,盲目地生搬硬套磁通量的计算公式Φ=B·S,由条形磁铁两极的磁感应强度B大于中间部分的磁感应强度,得出线框在两极正上方所穿过的磁通量Φ大于中间正上方所穿过的磁通量。
【分析解答】
规范画出条形磁铁的磁感线空间分布的剖面图,如图10-6所示。利用Φ=B·S定性判断出穿过闭合线圈的磁通量先增大后减小,选D。
【评析】
Φ=B·S计算公式使用时是有条件的,B是匀强磁场且要求B垂直S,所以磁感应强度大的位置磁通量不一定大,而本题的两极上方的磁场不是匀强磁场,磁场与正上方线框平面所成的角度又未知,难以定量加以计算,编写此题的目的就是想提醒同学们对磁场的形象化给予足够的重视。
例4 质量为m的通电导体棒ab置于倾角为θ的导轨上,如图10-7所示。已知导体与导轨间的动摩擦因数为μ,在图10-8所加各种磁场中,导体均静止,则导体与导轨间摩擦力为零的可能情况是:
【错解】
根据f=μN,题目中μ≠0,要使f=0必有N=0。为此需要安培力FB与导体重力G平衡,由左手定则可判定图10-8中B项有此可能,故选B。
【错解原因】
上述分析受到题目中“动摩擦因数为μ”的干扰,误用滑动摩擦力的计算式f=μN来讨论静摩擦力的问题。从而导致错选、漏选。
【分析解答】
要使静摩擦力为零,如果N=0,必有f=0。图10-8B选项中安培力的方向竖直向上与重力的方向相反可能使N=0,B是正确的;如果N≠0,则导体除受静摩擦力f以外的其他力的合力只要为零,那么f=0。在图10-8A选项中,导体所受到的重力G、支持力N及安培力F安三力合力可能为零,则导体所受静摩擦力可能为零。图10-8的C.D选项中,从导体所受到的重力G、支持力N及安培力F安三力的方向分析,合力不可能为零,所以导体所受静摩擦力不可能为零。故正确的选项应为A.B。
【评析】
本题是一道概念性极强的题,又是一道力学与电学知识交叉的综合试题。摩擦力有静摩擦力与滑动摩擦力两种。判断它们区别的前提是两个相互接触的物体有没有相对运动。力学中的概念的准确与否影响电学的学习成绩。
例5 有一自由的矩形导体线圈,通以电流I′。将其移入通以恒定电流I的长直导线的右侧。其ab与cd边跟长直导体AB在同一平面内且互相平行,如图10-9所示。试判断将该线圈从静止开始释放后的受力和运动情况。(不计重力)
【错解】
借助磁极的相互作用来判断。由于长直导线电流产生的磁场在矩形线圈所在处的磁感线方向为垂直纸面向里,它等效于条形磁铁的N极正对矩形线圈向里。因为通电线圈相当于环形电流,其磁极由右手螺旋定则判定为S极向外,它将受到等效N极的吸引,于是通电矩形线圈将垂直纸面向外加速。
【错解原因】
错误的根源就在于将直线电流的磁场与条形磁铁的磁极磁场等效看待。我们知道直线电流磁场的磁感线是一簇以直导线上各点为圆心的同心圆,它并不存在N极和S极,可称为无极场,不能与条形磁铁的有极场等效。
【分析解答】
利用左手定则判断。先画出直线电流的磁场在矩形线圈所在处的磁感线分布,由右手螺旋定则确定其磁感线的方向垂直纸面向里,如图10-10所示。线圈的四条边所受安培力的方向由左手定则判定。其中F1与F3相互平衡,因ab边所在处的磁场比cd边所在处的强,故F4>F2。由此可知矩形线圈abcd所受安培力的合力的方向向左,它将加速向左运动而与导体AB靠拢。
【评析】
用等效的思想处理问题是有条件的,磁场的等效,应该是磁场的分布有相似之处。
例如条形磁铁与通电直螺线管的磁场大致相同,可以等效。所以应该老老实实地将两个磁场画出来,经过比较看是否满足等效的条件。本题中直线电流的磁场就不能等效为匀强磁场。
例6 如图10-11所示,用绝缘丝线悬挂着的环形导体,位于与其所在平面垂直且向右的匀强磁场中,若环形导体通有如图所示方向的电流I,试判断环形导体的运动情况。
【错解】
已知匀强磁场的磁感线与导体环面垂直向右,它等效于条形磁铁N极正对环形导体圆面的左侧,而通电环形导体,即环形电流的磁场N极向左(根据右手定则来判定),它将受到等效N极的排斥作用,环形导体开始向右加速运动。
【错解原因】
误将匀强磁场等效于条形磁铁的磁场。
【分析解答】
利用左手定则判断。可将环形导体等分为若干段,每小段通电导体所受安培力均指向圆心。由对称性可知,这些安培力均为成对的平衡力。故该环形导体将保持原来的静止状态。
【评析】
对于直线电流的磁场和匀强磁场都应将其看作无极场。在这种磁场中分析通电线圈受力的问题时,不能用等效磁极的办法,因为它不符合实际情况。而必须运用左手定则分析出安培力合力的方向后,再行确定其运动状态变化情况。
例7 设空间存在竖直向下的匀强电场和垂直纸面向里的匀强磁场,如图10-12所示,已知一离子在电场力和洛仑兹力的作用下,从静止开始自A点沿曲线ACB运动,到达B点时速度为零,C点是运动的最低点,忽略重力,以下说法正确的是: [ ]
A.这离子必带正电荷
B.A点和B点位于同一高度
C.离子在C点时速度最大
D.离子到达B点时,将沿原曲线返回A点
【错解】
根据振动的往复性,离子到达B点后,将沿原曲线返回A点,选D。
【错解原因】
选D不正确,某些考生可能受“振动”现象的影响,误认为根据振动的往复性,离子到达B点后,将沿原曲线返回A点,实际上离子从B点开始运动后的受力情况与从A点运动后的受力情况相同,并不存在一个向振动那样有一个指向BCA弧内侧的回复力,使离子返回A点,而是如图10-13所示由B经C′点到B′点。
【分析解答】
(1)平行板间电场方向向下,离子由A点静止释放后在电场力的作用下是向下运动,可见电场力一定向下,所以离子必带正电荷,选A。
(2)离子具有速度后,它就在向下的电场力F及总与速度心垂直并不断改变方向的洛仑兹力f作用下沿ACB曲线运动,因洛仑兹力不做功,电场力做功等于动能的变化,而离子到达B点时的速度为零,所以从A到B电场力所做正功与负功加起来为零。这说明离子在电场中的B点与A点的电势能相等,即B点与A点位于同一高度,选B。
(3)因C点为轨道最低点,离子从A运动到C电场力做功最多,C点具有的动能最多,所以离子在C点速度最大,选C。
(4)只要将离子在B点的状态与A点进行比较,就可以发现它们的状态(速度为零,电势能相等)相同,如果右侧仍有同样的电场和磁场的叠加区域,离子就将在B之右侧重现前面的曲线运动,因此,离子是不可能沿原曲线返回A点的。
故选A,B,C为正确答案。
【评析】
初速度和加速度决定物体的运动情况。在力学部分绝大部分的习题所涉及的外力是恒力。加速度大小方向都不变。只要判断初始时刻加速度与初速度的关系,就可以判断物体以后的运动。本题中由于洛仑兹力的方向总垂直于速度方向,使得洛仑兹力与电场力的矢量和总在变化。所以只做一次分析就武断地下结论,必然会把原来力学中的结论照搬到这里,出现生搬硬套的错误。
例8 摆长为ι的单摆在匀强磁场中摆动,摆动平面与磁场方向垂直,如图10-14所示。摆动中摆线始终绷紧,若摆球带正电,电量为q,质量为m,磁感应强度为B,当球从最高处摆到最低处时,摆线上的拉力T多大?
【错解】
T,f始终垂直于速度v,根据机械能守恒定律:
在C处,f洛竖直向上,根据牛顿第二定律则有
【错解原因】
考虑问题不全面,认为题目中“从最高点到最低处”是指AC的过程,忽略了球可以从左右两方经过最低点。
【分析解答】
球从左右两方经过最低点,因速度方向不同,引起f洛不同,受力分析如图10-15所示。由于摆动时f洛和F拉都不做功,机械能守恒,小球无论向左、向右摆动过C点时的速度大小相同,方向相反。
摆球从最高点到达最低点C的过程满足机械能守恒:
当摆球在C的速度向右,根据左手定则,f洛竖直向上,根据牛顿第二定律则有
当摆球在C的速度向左,f洛竖直向下,根据牛顿第二定律则有
所以摆到最低处时,摆线上的拉力
【评析】
要避免本题错解的失误,就要对题目所叙述的各个状态认真画出速度方向,用左手定则判断洛仑兹力的方向。其余的工作就是运用牛顿第二定律和机械能守恒定律解题。
例9 如图10-16所示,带负电的粒子垂直磁场方向进入圆形匀强磁场区域,出磁场时速度偏离原方向60°角,已知带电粒子质量m=3×10-20kg,电量q=10-13C,速度v0=105m/s,磁场区域的半径R=3×10-1m,不计重力,求磁场的磁感应强度。
【错解】
带电粒子在磁场中做匀速圆周运动
【错解原因】
没有依据题意画出带电粒子的运动轨迹图,误将圆形磁场的半径当作粒子运动的半径,说明对公式中有关物理量的物理意义不明白。
【分析解答】
画进、出磁场速度的垂线得交点O′,O′点即为粒子作圆周运动的圆心,据此作出运动轨迹AB,如图10-17所示。此圆半径记为r。
带电粒子在磁场中做匀速圆周运动
【错析】
由于洛伦兹力总是垂直于速度方向,若已知带电粒子的任意两个速度方向,就可以通过作出两速度的垂线,找出两垂线的交点即为带电粒子做圆周运动的圆心。
例10 如图10-18所示,带电粒子在真空环境中的匀强磁场里按图示径迹运动。径迹为互相衔接的两段半径不等的半圆弧,中间是一块薄金属片,粒子穿过时有动能损失。试判断粒子在上、下两段半圆径迹中哪段所需时间较长?(粒子重力不计)
【错解】
的回旋周期与回旋半径成正比,因为上半部分径迹的半径较大,所以所需时间较长。
【错解原因】
错误地认为带电粒子在磁场中做圆周运动的速度不变,由周期公式
【分析解答】
首先根据洛仑兹力方向,(指向圆心),磁场方向以及动能损耗情况,判定粒子带正电,沿abcde方向运动。
再求通过上、下两段圆弧所需时间:带电粒子在磁场中做匀速圆周运动
子速度v,回旋半径R无关。因此上、下两半圆弧粒子通过所需时间相等。动能的损耗导致粒子的速度的减小,结果使得回旋半径按比例减小,周期并不改变。
【评析】
回旋加速器的过程恰好与本题所述过程相反。回旋加速器中粒子不断地被加速,但是粒子在磁场中的圆周运动周期不变。
例11 如图10-19所示,空中有水平向右的匀强电场和垂直于纸面向外的匀强磁场,质量为m,带电量为+q的滑块沿水平向右做匀速直线运动,滑块和水平面间的动摩擦因数为μ,滑块与墙碰撞后速度为原来的一半。滑块返回时,去掉了电场,恰好也做匀速直线运动,求原来电场强度的大小。
【错解】
碰撞前,粒子做匀速运动,Eq=μ(mg+Bqv)。返回时无电场力作用仍做匀速运动,水平方向无外力,竖直方向N=Bgv+mg。因为水平方向无摩擦,可知N=0,Bqv=-mg。解得E=0。
【错解原因】
错解中有两个错误:返回时,速度反向,洛仑兹力也应该改变方向。返回时速度大小应为原速度的一半。
【分析解答】
碰撞前,粒子做匀速运动, Eq=μ(mg+Bqv)。返回时无电场力作用仍做匀速运动,水平方向无外力,摩擦力f=0,所以N=0竖直方向上有Bgv
【评析】
实践证明,急于列式解题而忽略过程分析必然要犯经验主义的错误。分析好大有益。
例12 如图10-20所示,一块铜块左右两面接入电路中。有电流I自左向右流过铜块,当一磁感应强度为B的匀强磁场垂直前表面穿入铜块,从后表面垂直穿出时,在铜块上、下两面之间产生电势差,若铜块前、后两面间距为d,上、下两面间距为l。铜块单位体积内的自由电子数为n,电子电量为e,求铜板上、下两面之间的电势差U为多少?并说明哪个面的电势高。
【错解】
电流自左向右,用左手定则判断磁感线穿过手心四指指向电流的方向,正电荷受力方向向上,所以正电荷聚集在上极板。
随着正负电荷在上、下极板的聚集,在上、下极板之间形成一个电场,这个电场对正电荷产生作用力,作用力方向与正电荷刚进入磁场时所受的洛仑兹力方向相反。当电场强度增加到使电场力与洛仑兹力平衡时,正电荷不再向上表面移动。在铜块的上、下表面形成一个稳定的电势差U。研究电流中的某一个正电荷,其带电量为q,根据牛顿第二定律有
由电流的微观表达式I=nqSv
由几何关系可知 S=dl
【错解原因】
上述解法错在对金属导电的物理过程理解上。金属导体中的载流子是自由电子。当电流形成时,导体内的自由电子逆着电流的方向做定向移动。在磁场中受到洛仑兹力作用的是自由电子。
【分析解答】
铜块的电流的方向向右,铜块内的自由电子的定向移动的方向向左。用左手定则判断:四指指向电子运动的反方向,磁感线穿过手心,大拇指所指的方向为自由电子的受力方向。图10-21为自由电子受力的示意图。
随着自由电子在上极板的聚集,在上、下极板之间形成一个“下正上负”的电场,这个电场对自由电子产生作用力,作用力方向与自由电子刚进入磁场时所受的洛仑兹力方向相反。当电场强度增加到使电场力与洛仑兹力平衡时,自由电子不再向上表面移动。在铜块的上、下表面形成一个稳定的电势差U。研究电流中的某一个自由电子,其带电量为e,根据牛顿第二定律有
由电流的微观表达式I=neSv=nedlv。
【评析】
本题的特点是物理模型隐蔽。按照一部分同学的理解,这就是一道安培力的题目,以为伸手就可以判断安培力的方向。仔细分析电荷在上、下两个表面的聚集的原因,才发现是定向移动的电荷受到洛仑兹力的结果。因此,深入分析题目中所叙述的物理过程,挖出隐含条件,方能有正确的思路。
例13 如图10-22所示。在x轴上有垂直于xy平面向里的匀强磁场,磁感应强度为B;在x轴下方有沿y铀负方向的匀强电场,场强为E。一质最为m,电荷量为q的粒子从坐标原点。沿着y轴正方向射出。射出之后,第3次到达X轴时,它与点O的距离为L,求此粒子射出时的速度v和运动的总路程s,(重力不计)。
【常见错解】
粒子射出后第三次到达x轴,如图10-23所示
在电场中粒子的磁场中每一次的位移是l。
第3次到达x轴时,粒子运动的总路程为一个半圆周和六个位移的长度之和。
【错解原因】
错解是由于审题出现错误。他们把题中所说的“射出之后,第3次到达x轴”这段话理解为“粒子在磁场中运动通过x轴的次数”没有计算粒子从电场进入磁场的次数。也就是物理过程没有搞清就下手解题,必然出错。
【分析解答】
粒子在磁场中的运动为匀速圆周运动,在电场中的运动为匀变速直线运动。画出粒子运动的过程草图10-24。根据这张图可知粒子在磁场中运动半个周期后第一次通过x轴进入电场,做匀减速运动至速度为零,再反方向做匀加速直线运动,以原来的速度大小反方向进入磁场。这就是第二次进入磁场,接着粒子在磁场中做圆周运动,半个周期后第三次通过x轴。
Bqv=mv2/R
在电场中:粒子在电场中每一次的位移是l
第3次到达x轴时,粒子运动的总路程为一个圆周和两个位移的长度之和。
【评析】
把对问题所涉及到的物理图景和物理过程的正确分析是解物理题的前提条件,这往往比动手对题目进行计算还要重要,因为它反映了你对题目的正确理解。高考试卷中有一些题目要求考生对题中所涉及到的物理图景理解得非常清楚,对所发生的物理过程有正确的认识。这种工作不一定特别难,而是要求考生有一个端正的科学态度,认真地依照题意画出过程草图建立物理情景进行分析。
例14 一个负离子的质量为m,电量大小为q,以速度v0垂直于屏S经过小孔O射入存在着匀强磁场的真空室中,如图10-25所示。磁感应强度B方向与离子的初速度方向垂直,并垂直于纸面向里。如果离子进入磁场后经过时间t到这位置P,证明:直线OP与离子入射方向之间的夹角θ跟t
【错解】
根据牛顿第二定律和向心加速度公式
【错解原因】
高中阶段,我们在应用牛顿第二定律解题时,F应为恒力或平均力,本题中洛仑兹力是方向不断变化的力。不能直接代入公式求解。
【分析解答】
如图10-26,当离子到达位置P时圆心角为
【评析】
时时要注意公式的适用条件范围,稍不注意就会出现张冠李戴的错误。
如果想用平均力的牛顿第二定律求解,则要先求平均加速度
例15 图10-27为方向相互垂直的匀强电场和匀强磁场区域。电场强度为E,磁感强度为B,复合场的水平宽度为d,竖直方向足够长。现有一束电量为+q、质量为m初速度各不相同的粒子沿电场方向进入场区,求能逸出场区的粒子的动能增量ΔEk。
【错解】
当这束初速度不同、电量为+q、质量为m的带电粒子流射入电场中,由于带电粒子在磁场中受到洛仑兹力是与粒子运动方向垂直的,粒子将发生不同程度的偏转。有些粒子虽发生偏转,但仍能从入射界面的对面逸出场区;有些粒子则留在场区内运动。
从粒子射入左边界到从右边界逸出,电场力做功使粒子的动能发生变化。根据动能定理有:
Eqd=ΔEk
【错解原因】
错解的答案不错,但是不全面。没有考虑仍从左边界逸出的情况。
【分析解答】
由于带电粒子在磁场中受到洛仑兹力是与粒子运动方向垂直的。它只能使速度方向发生变。粒子速度越大,方向变化越快。因此当一束初速度不同、电量为+q、质量为m的带电粒子射入电场中,将发生不同程度的偏转。有些粒子虽发生偏转,但仍能从入射界面的对面逸出场区(同错解答案);有些粒子将留在场区内运动;有些粒子将折回入射面并从入射面逸出场区。由于洛仑兹力不会使粒子速度大小发生变化,故逸出场区的粒子的动能增量等于电场力功。对于那些折回入射面的粒子电场力功为零,其动能不变,动能增量ΔEk=0。
【评析】
本题考查带电粒子在磁场中的运动和能量变化。这道题计算量很小,要求对动能定理、电场力、磁场力等基本概念、基本规律有比较深入的理解,而且能够与题目所给的带电粒子的运动相结合才能求得解答。在结合题意分析时,特别要注意对关键词语的分析。本题中:“逸出场区”的准确含义是从任何一个边界逸出场区均可。
例16 初速度为零的离子经过电势差为U的电场加速后,从离子枪T中水平射出,与离子枪相距d处有两平行金属板MN和PQ,整个空间存在一磁感强度为B的匀强磁场如图10-28所示。不考虑重力的作用,荷质比q/m(q,m分别为离子的带电量与质量),应在什么范围内,离子才能打到金属板上?
【错解】
离子在离子枪内加速,出射速度为
由牛顿第二定律离子在磁场中离子的加速度为
离子在磁场中做平抛运动
【错解原因】
离子在离子枪中的的加速过程分析正确,离子进入磁场的过程分析错误。做平抛运动物体的加速度为一恒量,仅与初速度垂直。而洛仑兹力总与速度方向垂直,洛仑兹力大小不变、方向变化,它是个变力。离子在磁场中应做匀速圆周运动。
【分析解答】
设离子带负电,若离子正好打到金属板的近侧边缘M,则其偏转半
若离子正好打到金属板的远侧边缘N,则其偏转半径满足关系

因离子从离子枪射出的速度v由离子枪内的加速电场决定

代入式④即得
讨论:由以上方程组可知
【评析】
本题考查的能力要求体现在通过对边界条件的分析,将复杂的问题分解为若干个简单问题;把未知的问题转化为已知条件。并且通过几何关系找出大小两个半径来。从错解中还可以看出,熟练掌握基本的物理模型的特点(加速度与初速度的关系或加速度与位移之间的关系等)对正确选择解题思路的重要性。(共29张PPT)
高二期中期末
考前复习
物理
第八章 电场
一、三种产生电荷的方式:
1、摩擦起电: (1)正点荷:用绸子摩擦过的玻璃棒所带电荷; (2)负电荷:用毛皮摩擦过的橡胶棒所带电荷;(3)实质:电子从一物体转移到另一物体;
2、接触起电: (1)实质:电荷从一物体移到另一物体;(2)两个完全相同的物体相互接触后电荷平分;(3)、电荷的中和:等量的异种电荷相互接触,电荷相合抵消而对外不显电性,这种现象叫电荷的中和;
3、感应起电:把电荷移近不带电的导体,可以使导体带电;(1)电荷的基本性质:同种电荷相互排斥、异种电荷相互吸引; (2)实质:使导体的电荷从一部分移到另一部分;(3)感应起电时,导体离电荷近的一端带异种电荷,远端带同种电荷;
4、电荷的基本性质:能吸引轻小物体;
二、电荷守恒定律:电荷既不能被创生,亦不能被消失,它只能从一个物体转移到另一物体,或者从物体的一部分转移到另一部分;在转移过程中,电荷的总量不变。
三、元电荷:一个电子所带的电荷叫元电荷,用e表示。 1、e=1.6×10-19c; 2、一个质子所带电荷亦等于元电荷; 3、任何带电物体所带电荷都是元电荷的整数倍;
四、库仑定律:真空中两个静止点电荷间的相互作用力,跟它们所带电荷量的乘积成正比,跟它们之间距离的二次方成反比,作用力的方向在它们的连线上。电荷间的这种力叫库仑力, 1、计算公式:F=kQ1Q2/r2 (k=9.0×109N.m2/kg2) 2、库仑定律只适用于点电荷(电荷的体积可以忽略不计) 3、库仑力不是万有引力;
五、电场:电场是使点电荷之间产生静电力的一种物质。 1、只要有电荷存在,在电荷周围就一定存在电场; 2、电场的基本性质:电场对放入其中的电荷(静止、运动)有力的作用;这种力叫电场力;3、电场、磁场、重力场都是一种物质
六、电场强度:放入电场中某点的电荷所受电场力F跟它的电荷量Q的比值叫该点的电场强度; 1、定义式:E=F/q;E是电场强度;F是电场力;q是试探电荷; 2、电场强度是矢量,电场中某一点的场强方向就是放在该点的正电荷所受电场力的方向(与负电荷所受电场力的方向相反) 3、该公式适用于一切电场; 4、点电荷的电场强度公式:E=kQ/r2
七、电场的叠加:在空间若有几个点电荷同时存在,则空间某点的电场强度,为这几个点电荷在该点的电场强度的矢量和;解题方法:分别作出表示这几个点电荷在该点场强的有向线段,用平行四边形定则求出合场强;
八、电场线:电场线是人们为了形象的描述电场特性而人为假设的线。 1、电场线不是客观存在的线; 2、电场线的形状:电场线起于正电荷终于负电荷;G:\用锯木屑观测电场线.DAT (1)只有一个正电荷:电场线起于正电荷终于无穷远;(2)只有一个负电荷:起于无穷远,终于负电荷; (3)既有正电荷又有负电荷:起于正电荷终于负电荷; 3、电场线的作用: 1、表示电场的强弱:电场线密则电场强(电场强度大);电场线疏则电场弱电场强度小); 2、表示电场强度的方向:电场线上某点的切线方向就是该点的场强方向; 4、电场线的特点: 1、电场线不是封闭曲线; 2、同一电场中的电场线不向交;
电场线
九、匀强电场:电场强度的大小、方向处处相同的电场;匀强电场的电场线平行、且分布均匀; 1、匀强电场的电场线是一簇等间距的平行线;2、平行板电容器间的电是匀强电场;场
十、电势差:电荷在电场中由一点移到另一点时,电场力所作的功WAB与电荷量q的比值叫电势差,又名电压。 1、定义式:UAB=WAB/q; 2、电场力作的功与路径无关; 3、电势差又命电压,国际单位是伏特;
十一、电场中某点的电势,等于单位正电荷由该点移到参考点(零势点)时电场力作的功; 1、电势具有相对性,和零势面的选择有关;2、电势是标量,单位是伏特V; 3、电势差和电势间的关系:UAB= φA -φB;4、电势沿电场线的方向降低; 时,电场力要作功,则两点电势差不为零,就不是等势面; 4、相同电荷在同一等势面的任意位置,电势能相同;原因:电荷从一点移到另一点时,电场力不作功,所以电势能不变;5、电场线总是由电势高的地方指向电势低的地方; 6、等势面的画法:相临等势面间的距离相等;
十二、电场强度和电势差间的关系:在匀强电场中,沿场强方向的两点间的电势差等于场强与这两点的距离的乘积。 1、数学表达式:U=Ed; 2、该公式的使适用条件是,仅仅适用于匀强电场; 3、d是两等势面间的垂直距离;
十三、电容器:储存电荷(电场能)的装置。 1、结构:由两个彼此绝缘的金属导体组成; 2、最常见的电容器:平行板电容器;
十四、电容:电容器所带电荷量Q与两电容器量极板间电势差U的比值;用“C”来表示。 1、定义式:C=Q/U; 2、电容是表示电容器储存电荷本领强弱的物理量; 3、国际单位:法拉 简称:法,用F表示 4、电容器的电容是电容器的属性,与Q、U无关;
十五、平行板电容器的决定式:C=εs/4πkd;(其中d为两极板间的垂直距离,又称板间距;k是静电力常数,k=9.0×10 9N.m2/c2;ε是电介质的介电常数,空气的介电常数最小;s表示两极板间的正对面积;) 1、电容器的两极板与电源相连时,两板间的电势差不变,等于电源的电压; 2、当电容器未与电路相连通时电容器两板所带电荷量不变;
十六、带电粒子的加速:
1、条件:带电粒子运动方向和场强方向垂直,忽略重力;
2、原理:动能定理:电场力做的功等于动能的变化:W=Uq=1/2mvt2-1/2mv02;
3、推论:当初速度为零时,Uq=1/2mvt2;
4、使带电粒子速度变大的电场又名加速电场;
第九章 恒定电流
一、电流:电荷的定向移动行成电流。 1、产生电流的条件: (1)自由电荷; (2)电场; 2、电流是标量,但有方向:我们规定:正电荷定向移动的方向是电流的方向; 注:在电源外部,电流从电源的正极流向负极;在电源的内部,电流从负极流向正极; 3、电流的大小:通过导体横截面的电荷量Q跟通过这些电量所用时间t的比值叫电流I表示;(1)数学表达式:I=Q/t;(2)电流的国际单位:安培A (3)常用单位:毫安mA、微安uA;(4)1A=103mA=106uA
二、欧姆定律:导体中的电流跟导体两端的电压U成正比,跟导体的电阻R成反比; 1、定义式:I=U/R; 2、推论:R=U/I; 3、电阻的国际单位时欧姆,用Ω表示; 1kΩ=103Ω,1MΩ=106Ω; 4、伏安特性曲线:
三、闭合电路:由电源、导线、用电器、电键组成; 1、电动势:电源的电动势等于电源没接入电路时两极间的电压;用E表示; 2、外电路:电源外部的电路叫外电路;外电路的电阻叫外电阻;用R表示;其两端电压叫外电压; 3、内电路:电源内部的电路叫内电阻,内点路的电阻叫内电阻;用r表示;其两端电压叫内电压;如:发电机的线圈、干电池内的溶液是内电路,其电阻是内电阻;
4、电源的电动势等于内、外电压之和; E=U内+U外;U外=RI;E=(R+r)I
四、闭合电路的欧姆定律:闭合电路里的电流跟电的电动势成正比,跟内、外电路的电阻之和成反比;
1、数学表达式:I=E/(R+r)
2、当外电路断开时,外电阻无穷大,电源电动势等于路端电压;就是电源电动势的定义;
3、当外电阻为零(短路)时,因内阻很小,电流很大,会烧坏电路;
五、半导体:导电能力在导体和绝缘体之间;半导体的电阻随温升越高而减小;
六:导体的电阻随温度的升高而升高,当温度降低到某一值时电阻消失,成为超导;
第十章 磁场
一、磁场: 1、磁场的基本性质:磁场对放入其中的磁极、电流有磁场力的作用; 2、磁铁、电流都能能产生磁场; 3、磁极和磁极之间,磁极和电流之间,电流和电流之间都通过磁场发生相互作用; 4、磁场的方向:磁场中小磁针北极的指向就是该点磁场的方向;
二、磁感线:在磁场中画一条有向的曲线,在这些曲线中每点的切线方向就是该点的磁场方向; 1、磁感线是人们为了描述磁场而人为假设的线; 2、磁铁的磁感线,在外部从北极到南极,内部从南极到北极;3、磁感线是封闭曲线;
磁感线
三、安培定则: 1、通电直导线的磁感线:用右手握住通电导线,让伸直的大拇指所指方向跟电流方向一致,弯曲的四指所指的方向就是磁感线的环绕方向; 2、环形电流的磁感线:让右手弯曲的四指和环形电流方向一致,伸直的大拇指所指的方向就是环形导线中心轴上磁感线的方向; 3、通电螺旋管的磁场:用右手握住螺旋管,让弯曲的四指方向和电流方向一致,大拇指所指的方向就是螺旋管内部磁感线的方向;
四、地磁场:地球本身产生的磁场;从地磁北极(地理南极)到地磁南极(地理北极);
安培定则
地磁场
五、磁感应强度:磁感应强度是描述磁场强弱的物理量。 1、磁感应强度的大小:在磁场中垂直于磁场方向的通电导线,所受的安培力F跟电流I和导线长度L的乘积的比值,叫磁感应强度。B=F/IL 2、磁感应强度的方向就是该点磁场的方向(放在该点的小磁针北极的指向) 3、磁感应强度的国际单位:特斯拉 T, 1T=1N/A。m
六、安培力:磁场对电流的作用力; 1、大小:在匀强磁场中,当通电导线与磁场垂直时,电流所受安培力F等于磁感应强度B、电流I和导线长度L三者的乘积。2、定义式F=BIL(适用于匀强电场、导线很短时) 3、安培力的方向:左手定则:伸开左手,使大拇指根其余四个手指垂直,并且跟手掌在同一个平面内,把手放入磁场中,让磁感线垂直穿过手心,并使伸开四指指向电流的方向,那么大拇指所指的方向就是通电导线所受安培力的方向。
七、磁铁和电流都可产生磁场;
八、磁场对电流有力的作用;
九、电流和电流之间亦有力的作用;
(1)同向电流产生引力;
(2)异向电流产生斥力;
十、分子电流假说:所有磁场都是由电流产生的;
十一、磁性材料:能够被强烈磁化的物质叫磁性材料:(1)软磁材料:磁化后容易去磁的材料;例:软铁;硅钢;应用:制造电磁铁、变压器、
(2)硬磁材料:磁化后不容易去磁的材料;例:碳钢、钨钢、制造:永久磁铁;
十二、磁场对运动电荷的作用力,叫做洛伦兹力 1、洛仑兹力的方向由左手定则判断:伸开左手让大拇指和其余四指共面且垂直,把左手放入磁场中,让磁感线垂直穿过手心,四指为正电荷运动方向(与负电荷运动方向相反)大拇指所指方向就是洛仑兹力的方向; (1)洛仑兹力F一定和B、V决定的平面垂直。 (2)洛仑兹力只改变速度的方向而不改变其大小 (3)洛伦兹力永远不做功。 2、洛伦兹力的大小 (1)当v平行于B时:F=0 (2)当v垂直于B时:F=qvB
1、电阻定律:导体两端电阻与导体长度、横截面积及材料性质有关。 R=pl/S(电阻的决定式) P只与导体材料性质有关。 R与温度有关。
2、 伏安特性曲线:描述电压与电流之间的函数关系的图象。
3、 二极管:单向导电性;正极与电源正极相连。
4、串联特点:①总电压等于各部分电压之和。 ②电流处处相等 ③总电阻等于各部分电阻和 ④总功率等于各部分功率和
5、并联特点:①总电压等于各支路电压 ②总电流等于各支路电流和 ③总电阻的倒数等于各支路电阻倒数之 和 ④总功率等于各支路功率和
伏安特性曲线
6、伏安法:(1)限流式;(2)分压式。
7、等效图的接法:(1)节点搭桥法;(2)等电势法(拉扯法)。
8、电动势:(1)定义:非静电力对电荷所做的功与被移送的电荷量之比。 (2)物理意义:反映电源提供电能的本领。 (3)公式:E电动势=W其/q (4)电动势只与电源性质有关 (5)电动势、内阻是电源性质的衡量指标。电动势以大为好,内阻以小为好。
9、闭合电路欧姆定律:E=U外+U内
10、外阻与路端电压成正比。
11、测量电源电动势与内阻的方法:伏安法、伏箱法、安箱法。
1.利用电流表和电压表来测量
电路图:有两种连接方式,如图1所示电流表内接法和如图2
所示的电流表外接法。


  
原理:闭合电路欧姆定律 ,改变外电阻R,就能测得U、I的数
据,利用两组数据代入公式可求得E、r的数值,但误差较大,
通常利用多组数据作出U—I图象来求解。
误差:利用如图1所示的电路测量时,E测<E真,r测<r真;
利用如图2所示的电路测量时,E测=E真,r测>r真。
2、伏安法
12、外接、内接的原则:观察分压、分流效果哪个明显。 外接、内接的口诀:小外偏小、大内偏大。
13、表头改装电压表须串联大电阻 表头改装电流表须并联小电阻
14、多用电表→闭合电路欧姆定律→标欧姆表的刻度
15、功率
16、纯电阻电路:电能全部转化为热能的电路。
17、电源总功率:EI=IU外+IU内
18、与门电路、或门电路、非门电路
19、电学黑箱问题
20、I=Q/t=nqvS S指电荷通过的截面;V指电荷定向移动的速度