《分数基本性质》教学设计
教学目标
1、知识与技能目标:
(1)经历探索分数的基本性质的过程,理解分数的基本性质。
(2)能运用分数的基本性质,把一个分数化成指定分母(或分子)而大小不变的分数
2、过程与方法目标:
?(1)
经历观察、操作和讨论等学习活动,并在探索过程中,能进行有条理的思考,能对分数的基本性质作出简要的、合理的说明。?
(2)
培养学生的观察、比较、归纳、总结概括能力
(3)能根据解决问题的需要,收集有用的信息进行归纳,发展学生的归纳、推理能力。?
3、情感态度与价值观目标:
?(1)经历观察、操作和讨论等数学学习活动,使学生进一步体验数学学习的乐趣。
?(2)
鼓励学生敢于发现问题,培养学生勇于解决问题的学习品质
教学重点
探索、发现和掌握分数的基本性质,并能运用分数的基本性质解决问题。
教学难点
自主探究、归纳概括分数的基本性质。
教法
引拨法,实验法,归纳法,谈话法等。
学法
猜想验证实验法,讨论法,小组合作法等。
教学过程
一、故事引人,揭示课题:
师:同学们,你们喜欢看《喜羊羊与灰太狼》的故事吗?
生:喜欢。
师:老师这里有一个慢羊羊村长分饼的故事。羊村的小羊最喜欢吃村长做的饼。有一天,村长做了三块大小一样的饼分给小羊们吃,它先把第一块饼的1/2分给懒羊羊。再把第二块饼的2/4分给喜羊羊。最后把第三块饼的4/8分给美羊羊。懒羊羊不高兴地说:“村长不公平,他们的多,我的少。”
师:孩子们,村长公平吗?小朋友们,你知道哪只羊分得多?
生1:不公平,美羊羊分得多。
生2:公平,因为他们分得一样多。
二、探究新知,解决问题
(一)验证猜想
师:到底谁的猜想是正确地呢?让我们一起来验证一下。
1、折一折,画一画,剪一剪,比一比
(1)
折
请同学们拿出三张同样大小的正方形纸,把每张纸都看作单位“1”。用手分别平均折成2份、4份、8份。
(2)
画
在折好的正方形纸上,分别把其中的2份、4份、8份画上阴影。
(3)
剪
把正方中的阴影部分剪下来。
(4)
比
把剪下的阴影部分重叠,比一比结果怎样。
要求:
1)三人为一小组,小组中每人选择一个不同的分数,先折一折,再画一画,剪一剪的方法把它表现出来。
2)三人做好之后,将三副图进行比较,看看能发现什么?
3)学生汇报。
请这一小组同学谈谈发现:通过比较,三副图阴影部分面积一样,因而三个分数一样大。
4)教师课件出示1/2、2/4、4/8相等的过程。
2、师:三只小羊分得的饼同样多,仔细观察这三个分数什么变了?什么没变?
小组合作,学生仔细观察,讨论,学生汇报小结:它们的分子和分母变化了,但分数的大小没变。
(二)初步概括分数基本性质
算一算:
1、师:
这三个分数的分子、分母都不相同,为什么分数的大小却相等的?你们能找出它们的变化规律吗?请三人为一组,讨论这个问题。
2、学生小组合作,观察,讨论。
自学提示:
A、从左到右观察,想一下,这三个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢。
B、从右到左观察,想一下,这三个分数的分子、分母怎样变化才能得到下一个分数,且分数的大小不变呢。
3、小组汇报
生:我发现了1/2的分子与分母同时乘以2得到了2/4,1/2的分子和分母同时乘以4得到了4/8。
请二名同学重复。
师:你们想得一样吗?我把1/2的分子分母同时乘2得到了2/4,1/2的分子和分母同时乘4又得到了4/8。在这个分数中我们是把分子分母同时乘2,分数的大小不变,那如果我们把分数的分子分母同时乘5,分数的大小变吗?同时乘以6.8呢?那你们能不能根据这个式子来总结一个规律呢?(课件同时出示变化过程)
生回答:一个分数的分子分母同时乘相同的数,分数的大小不变。
请一至二名同学回答。
师板书:分数的分子分母同时乘
相同的数
,分数的大小不变。
师:谁来举一个例子。指名三位同学回答,师板书,并问:同时乘以了几?
师:
这样的例子我们可以举出很多很多,刚才我们是从左往右观察的,如果把这个式子从右往左观察,你们又会发现什么呢?(点击课件出示)
请一同学回答,
生:我们发现了4/8的分子与分母同时除以2得了2/4,4/8的分子与分母同时除以4得到了1/2。课件点击出示同时变化过程。
师:嗯,分数的分子分母同时除以2分数的大小不变,如果同时除以5大小会变吗?同时除以8.6呢?能不能根据这个式子再总结出一句话呢?
生:分数的分子分母同时除以相同的数,分数的大小不变。
(二名学生重复)
师板书:或者除以
师:你能根据刚才总结的规律举一个例子吗?
让三名学生举出例子,师板书。并问:分子分母同时除以了几?
4、(1)师:根据分数的这一变化规律,你认为这个式子对吗?为什么?(课件出示下列式子)
==
(强调“相同的数”)
(强调“同时”)
学生回答,并说明理由。
(2)师:分数的分子、分母都乘以或除以相同的数,分数的大小不变。这里“相同的数”是不是任何的数都可以呢?我们一起来看这样一个分数。
(课件出示式子: )
师:这个式子成立吗?
生:不成立,
师:为什么
生:因为0不能作除数,
师:0不能作除数,所以这个式子是错误的。
师:我再说一个式子,我不乘以0了,我除以0,这个式子成立吗?(课件出示:除以0。)
生:不成立,因为在分数当中分母相当于除数,除数不能为0。
师:对,因为分数的分子、分母都乘0,则分数成为
?,在分数里分母不能为0,所以分数的分子、分母不能同时乘0,又因为在除法里零不能作除数,所以分数的分子、分母也不能同时除以0。所以这两个式子都是不成立的?我们刚才总结的分数的分子分母同时乘或者除以相同的数,要0除外。(师板书0除外)
师:到现在为止这个规律我们就总结完了,那在这个规律里你觉得什么地方需要我们注意一下呢?
生:同时和相同的数
师:“同时”和“相同的数”(师将重点词语打点),大家想得一样吗?这个就是我们今天这节课要学习的分数的基本性质。(师板书课题:分数的基本性质)
师:我相信懒羊羊学会了分数的基本性质,那就不会生气了,那咱们同学们千万不要犯它那样的错误了。下面让我们一起把分数的基本性质边读边记。
生齐读二遍。
师:这个分数的基本性质特别有用,我们可以根据分数的基本性质把一个分数化成和它相等的另外一个分数。我们一起来看例2.
三、运用规律、自学例题
1、例2:把2/3
和10/24化成分母是12而大小不变的分数。(课件出示)请一同学读题。
2、
分组讨论
问:分子分母应怎样变化?变化的依据是什么?
3、让生独立完成,完成后和同位的同学说一说你是怎样想的。
每题请二名同学回答,(课件点击出示答案)
4、分数的基本性质与商不变性质
师:能否用商不变性质来说明分数的基本性质?
生:因为
被除数÷除数=
(除数不能为0)
所以被除数与除数同时扩大或缩小相同的倍数,就相当于分子、分母同时扩大或缩小相同的倍数(0除外)。因此,商不变就相当于分数的大小不变。
四、课堂运用(课件出示)
1、判断。(手势表示,并说明理由。)
(1)分数的分子、分母都乘以或除以相同的数,分数的大小不变。
(2)把
的分子缩小5倍,分母也同时缩小5倍,分数的大小不变。
(3)
的分子乘以3,分母除以3,分数的大小不变。 (
)
2、我是跨栏高手。
3、找朋友游戏:
拿出课前发的分数纸,并看清手中的分数。与
相等的,举起自已的分数后请到右边,与
相等的到左边,与
相等的到讲台。
4、请帮小熊和小山羊找回大小相等的分数.
五、拾捡硕果,拓展延伸
1、看到同学们这么自信的回答,老师就知道今天大家的收获不少,谁来说说这节课你都收获了哪些东西?
2、拓展延伸:
村长运用什么规律来分饼的?如果沸羊羊要四块,村长怎么分才公平呢?如果要五块呢?
六、板书设计
分数的基本性质
教学反思
我讲的这节课内容是人教版五年级教材《分数的基本性质》,本节课的主要目标是:使学生理解分数基本性质,并会用分数的基本性质把不同分母的分数化成分母相同而大小不变的分数。在课堂中,我充分利用学生的生活经验,设计生动有趣的故事《羊村村长分饼》,激发学生的学习兴趣,展开课堂教学。
1、教学的整个过程是学生亲自验证的过程,通过“验证”学生感受了数学的严谨性。设计以“猜想--观察--验证--概括--深化--提高”的环节,把知识的形成过程展现在学生的面前,使学生在掌握分数的基本性质的同时,感知到数学知识的形成过程,在这一过程中注意渗透学生自学方法、解决问题的策略、体会数学知识与生活的紧密联系,同时教给学生学会学习,学会思考的方法。在师生共同协作的过程中,达到课堂教学方法的最优化,提高了课堂教学效益。
2、在推导规律的过程中,抓住分数的分子、分母按怎样的规律变化而分数大小不变这一点,通过动手操作、实践,
引导学生自己去发现、证实并归纳:分数的分子分母同时乘以或除以一个相同的数(零除外),分数的大小不变。在这关键处,教师又进一步发动全班讨论,把问题引向纵深,这种教学模式既重视学生自主参与,相互合作的发挥,又有利于学生展现自己知识的建构过程,不仅知其结果,而且更了解自己得出结果的过程和先决条件,促进知识与能力的同步发展。
3、教学中取舍教材、取舍手段,着眼于学生的学习。教学中既运用了信息技术,又把传统教学手段有机地结合,让资源充分、有效地发挥作用,优化教师的教学手段,提高课堂教学效率。
与与 相等的:
与 相等的: