圆的面积(教案)数学六年级上册-北师大版

文档属性

名称 圆的面积(教案)数学六年级上册-北师大版
格式 doc
文件大小 26.5KB
资源类型 教案
版本资源 北师大版
科目 数学
更新时间 2021-09-17 14:08:08

图片预览

文档简介

圆的面积(一)
1教学目标
1.
理解和掌握圆面积的计算公式,沟通圆与其它图形之间的联系,增强观察、操作、分析、概括的能力以及逻辑推理能力。
2.
学会利用已有的知识,运用数学思想方法,推导出圆面积计算公式;感受极限、转化、以直代曲等数学思想方法。
3.认真观察、深入思考,面对困难勇于克服、弃而不舍。
2学情分析
?
?
《圆的面积》一课是小学数学第十一册第五单元第四小节的起始课。本课的教学要求主要是帮助学生理解和掌握圆面积的计算公式,培养学生观察、操作、分析、概括等能力。以往主要教学方法是:教师先带领学生将圆沿半径剪开,将若干个小扇形拼成长方形,借助长方形面积公式来推导圆面积的公式。然后在教师的引导下部分学生再将圆转化成平行四边形,甚至梯形、三角形,借助已知图形的面积公式推导圆面积的公式。一节课至少展现三、四种转化方法,教学容量较大、内容较难。
?
?
看到这样的教学过程我产生了一些困惑:
1.学生能想到这样的转化的方法吗?——这使我想到了学生学习平面图形的历程。学生第一次学习最基本的图形的面积:长、正方形。可以看出使用面积单位拼摆的方法得到的图形面积其实是最为直接的方式。学生学习的所有直线段图形,可以看出它们之间有着非常直观地联系,易于转化。作为第一个曲边图形“圆”,面对以上学习的转化发过程,学生怎么就能想到把圆等分成小扇形并拼出学过的图形呢?这无疑需要一个思维的飞跃,如果这个飞跃的过程是属于学生自己的,那样才是真正有价值的。
2.在老师的讲授下又有多少学生能理解多种转化方法呢?
我先在自己班进行了多种转化方法的试验,发现还真有孩子的思维水平让我刮目相看,可我也发现有80%的孩子这节课没有参与真正的实验研究,只是跟着别人看、听,下课时有一半的孩子还不认可圆面积转化的过程。
一节课是只为20%的孩子服务,还是应尽可能让每一个孩子都有不同层次的体验与收获呢?
3重点难点
教学重点:运用转化思想探索圆面积的解决办法。
教学难点:如何将曲线图型转化成直线型图形以及对极限思想的渗透。
4教学过程
活动1【导入】引入课题
同学们圆是我们在小学阶段接触的第一个曲边图形,它在生活中也有广泛的应用,我们来欣赏一下生活中的圆吧!(ppt到泳池)
今天我们一起要来研究的是圆的面积。(板书课题:圆的面积)
活动2【导入】交流困难
我看到有同学已经有了自己的想法,但是,面对“圆”这么特殊的图形也有了一些问题,我们先暂停手中试验,一起来分享一下!
(1)有同学在圆里画出了一个正方形,请这样的同学来介绍一下?教师操作
ppt提问:我们学过了这么多种平面图形,可你们怎么就想到在圆里画正方形了。
生1:因为他和圆最接近,
师:你能想一想,为什么说正方形和圆最接近吗?
生2:正方形正正方方的,四边都一样长,
生3:在圆中画正方形会让剩下的部分最少,而且剩下的部分都是一样的。
生4:正方形和圆最像了,正方形的对称轴最多,圆有无数条对称轴。
师:看看同学们多么善于思考呀,通过你们的发言让我感受到,和其他学过的图形相比正方形和圆真的非常接近,你们的数学直觉真敏锐,太了不起了。
(2)在圆里画出了很多的小方格,请这样的同学来介绍一下?。
提问:看看同学们的想法多有创意呀,但是你们是怎样想到用小方格来解决问题的呢?
生1:我们最开始学习长方形、正方形的面积时就是用面积单位拼摆的方法研究。
生2:我们以前学习的很多图形的面积,比如平行四边形、三角形、梯形其实都可以用方格来计算,可以数有多少1平方厘米的小方格,就可知道图形的面积了。
师:你们真是了不起,我们最初学习的面积单位,它是一个最基本的研究图形面积的方法,后来我们又学习了不同的研究图形面积的方法,比如像拼摆、割补等方法,运用面积单位寻找图形面积就不太常用了,今天同学们面对圆面积的时候又想到了它,你们的好方法让我想起了我的一位老师说过的话:退回到原始,不失其本质!
(3)还有一种想法也来和大家分享。
他发现原来学习的图形之间都是有关系的,可以相互转化。想到了我们在研究图形面积时最常用的方法“转化”,你们认为转化不精确是吗?
活动3【讲授】小结
同学们你们开动脑筋,用你们的智慧已经能够解决圆面积中绝大部分的问题,同时也遇到了想要更精确地得到圆的面积,需要解决剩余面积的问题。对于这些不可知的地方,我们是否可以继续去研究它,让这些不可知的地方越来越小,是否就越来越接近圆的面积了呢?困难就摆在这里,但研究的智慧与方法在你们的头脑中。选择你感兴趣的研究方案,赶快动手试试吧!回到Iteach,可以继续研究,也可以删除重画。完成之后拍照提交到讨论二!学生操作
活动4【活动】全班交流
师:我想同学们一定像数学家一样非常投入地在研究圆的面积,老师从心里钦佩你们。有句话说:倾听是分享成功的最好方法,那么我们就一起来看看同学们是如何来解决圆面积的问题。教师操作
(1)刚才在圆中画正方形的同学先让我们看看他们后续的研究吧!
生1:我在空余部分补了补了三角形。
还有同学发现空余的部分还可以继续在上面补三角形会更接近圆。
师:看来他真的有了属于自己的研究成果。对于这位同学的研究过程,同学们有什么疑问或是感想吗?
生1:总是这样补三角形真的可以越来越接近圆的面积,就是有点麻烦。
生2:如果只看图形最外面一圈,我发现是一个正多边形。
师:同学们仔细观察一下,最外面一圈是一个什么样的图形?这个图形有什么特点吗?你还有其他的发现吗?
生:的确是正多边形,如果正多边形的边数更多一些,几乎就是一个圆了。
师:这位同学用了“几乎”,你们能想象到了吗?请看投影,看到这样的变化过程能谈谈谈你们有什么感受吗?
同学们一定发现了多边形边数越多越接近圆。
ppt有这样一句名言:割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣。这句话是什么意思呢?这里“割”就是分割的意思;“失”指误差。这就是说,圆内接正多边形的边数无限增加的时候,它的周长会越来越接近直到等于圆周长,它的面积也会越来越接近直到等于圆面积。这句话出自我国魏晋时期的数学家刘徽,曾用圆内接正多边形计算出π的近似值,他的方法被后人称为割圆术。他用割圆术一直算到圆内接正192边形。短暂的时间你们都和大数学家有了相同的发现,多了不起呀!(贴)
(2)我们再来看看刚才画小方格的同学们后面的研究吧!
生:可以把剩下的地方画更小的方格就可以算出准确的面积了。
师:这位同学也有了自己的研究成果,可以非常准确的解决圆面积的问题了。对于这位同学的研究过程,你有什么疑问或是感想吗?
生:有同学会问:这样就真准确了吗?是不是永远都会有曲边存在呢?
小结:同学们想一想,既然可以画更小的格,曲边小了方格可以画的更小,是不是可以这样无限的画下去呢?
生:这样画下去倒是可以,但是算起来太麻烦了。
师:的确会让我们感觉计算起来比较麻烦,但其实只是我们缺少一些更好的计算方法而已,等你们以后学了更多的知识,计算就不再是问题了。同学们用了最为普遍的方法,虽然看似简单,却能解决这个很难的曲边图形的面积,如果以后再遇到更特殊的图形面积,你们有没有信心解决呢?我想一定是没问题的。
(3)我们再来看看第三位同学又有了什么新的发现吧!
生1:将圆等分成16分,拼成一个近似的平行四边形,平行四边形的底边长度其实就是圆周长的一半,而平行四边形的高就是圆的半径,所以,平行四边形的面积是底乘高,那么圆的面积就可以用圆周长的一半乘半径得到。
师:对于他们的方法你有什么疑问或是受到什么启发吗?
生:圆看似很特殊,其实和其他图形也是有联系的,
生:这是真正的平行四边形吗?他的上下两条底边都是弯弯曲曲的。教师操作
的确现在看来还是有点曲边的,但要是细分下去,16份,32份、64份,你觉得会怎样?
Ppt:那样就会越来越行四边形,曲边越来越直。但是无论分多少份其实道理是一样的,平行四边形的底是圆周长的一半,平行四边形的高是圆的半径。
师:让我们再来看一看圆面积的转化过程,将圆沿半径剪开,拼成平行四边形,圆的面积等于平行四边形的面积。平行四边形的底是圆周长的一半,平行四边形的高是圆的半径,圆周长的一半可以表示为c/2=2
活动5【讲授】总结
看看你们是多么的了不起呀,对于圆这么特殊的图形,同样能够找到它与学过图形之间的联系,从而寻找到圆面积的计算公式,可以帮助我们方便快捷的得到圆的面积。面对这样的方法对你有什么启发吗?你还有其他的想法吗?
前几节课我们已经认识了圆并学习圆的周长,那么对于圆你能说说你的感受吗?
我们曾经感受到了圆的圆润和完美,在今天这个探究的过程中,我们不仅再一次体会到圆的完美和神奇,而且还发现了圆和正方形、正多边形,以及学过的很多图形之间有着千丝万缕的联系。其实在圆中还有许多的美妙与神奇,有待我们今后继续探索。