2021-2022学年河南省洛阳市洛南新区外国语学校八年级第一学期开学数学试卷
一、选择题(共10小题,每小题3分。共30分)
1.以下四家银行的标志图中,不是轴对称图形的是( )
A.
B.
C.
D.
2.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )
A.AD=AE
B.DB=AE
C.DF=EF
D.DB=EC
3.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有( )
个.
A.1
B.2
C.3
D.4
4.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于( )
A.80°
B.60°
C.40°
D.30°
5.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于( )
A.5
B.4
C.3
D.2
6.如图,△ABC≌△AED,连接BE.若∠ABC=15°,∠D=135°,∠EAC=24°,则∠BEA的度数为( )
A.54°
B.63°
C.64°
D.68°
7.如图,点P是∠AOB的角平分线OC上一点,PE⊥OA,OE=10,点G是线段OP的中点,连接EG,点F是射线OB上的一个动点.若PF的最小值为4,则△PGE的面积为( )
A.5
B.10
C.20
D.40
8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是( )
A.EC=EF
B.FE=FC
C.CE=CF
D.CE=CF=EF
9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是( )
A.γ=2α+β
B.γ=α+2β
C.γ=α+β
D.γ=180°﹣α﹣β
10.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE相交于点P,交AC于点M,交AD与点N.下列结论:①BD=CE;②∠BPE=180°﹣2α;③AP平分∠BPE;④若α=60°,则PE=AP+PD.其中一定正确的结论的个数是( )
A.1
B.2
C.3
D.4
二、填空题(共5小题,每小题3分,共15分)
11.一个等腰三角形一边长为3cm,另一边长为7cm,那么这个等腰三角形的周长是
cm.
12.边长分别为a和b的两个正方形按如图的样式摆放,则图中的阴影部分的面积为
.
13.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC=
.
14.如图,在Rt△ABC中,∠ACB=90°,BE平分∠ABC,CE⊥BE于点E,连接AE.若AC=BC=4,则△ABE的面积为
.
15.如图,在△ABC中,∠C=90°,∠A=30°,BC=3,P是AB上的一动点,PE⊥AC于E,沿PE将∠A折叠,点A的对应点为D,若△BPD是直角三角形,则PA=
.
三、解答题(共8小题,共75分)
16.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=40°,求∠BDE的度数.
17.已知△ABN和△ACM位置如图所示,∠B=∠C,AD=AE,∠1=∠2.求证:∠M=∠N.
18.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.
(1)求BC的长;
(2)分别连接OA、OB、OC,若△OBC的周长为13cm,求OA的长.
19.如图,△ABC是等边三角形,延长BC到E,使CE=BC.点D是边AC的中点,连接ED并延长ED交AB于F求证:
(1)EF⊥AB;
(2)DE=2DF.
20.已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.
(1)当∠OAB=40°时,∠ACB=
度;
(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.
21.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.
【观察猜想】
①AE与BD的数量关系是
;
②∠APD的度数为
.
【数学思考】
如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;
【拓展应用】
如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为
.
22.问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)
特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.
归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.
23.通过对下面数学模型的研究学习,解决下列问题:
【模型呈现】
(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC=
,BC=
.我们把这个数学模型称为“K字”模型或“一线三等角”模型;
【模型应用】
(2)①如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AH于点H,DE与直线AH交于点G.求证:点G是DE的中点;
②如图3,在平面直角坐标系xOy中,点A为平面内任一点,点B的坐标为(4,1).若△AOB是以OB为斜边的等腰直角三角形,请直接写出点A的坐标.
参考答案
一、选择题(共10小题,每小题3分。共30分)
1.以下四家银行的标志图中,不是轴对称图形的是( )
A.
B.
C.
D.
【分析】根据轴对称图形的概念求解.
解:A、是轴对称图形,故错误;
B、不是轴对称图形,故正确;
C、是轴对称图形,故错误;
D、不轴对称图形,故错误.
故选:B.
2.如图,已知△ABE≌△ACD,下列选项中不能被证明的等式是( )
A.AD=AE
B.DB=AE
C.DF=EF
D.DB=EC
【分析】根据全等三角形的性质可得到AD=AE、AB=AC,则可得到BD=CE,∠B=∠C,则可证明△BDF≌△CEF,可得DF=EF,可求得答案.
解:
∵△ABE≌△ACD,
∴AB=AC,AD=AE,∠B=∠C,故A正确;
∴AB﹣AD=AC﹣AE,即BD=EC,故D正确;
在△BDF和△CEF中
∴△BDF≌△CEF(ASA),
∴DF=EF,故C正确;
故选:B.
3.如图,已知,BD为△ABC的角平分线,且BD=BC,E为BD延长线上的一点,BE=BA.下列结论:①△ABD≌△EBC;②∠BCE+∠BCD=180°;③AD=AE=EC;④AC=2CD.其中正确的有( )
个.
A.1
B.2
C.3
D.4
【分析】由SAS证明△ABD≌△EBC,可得∠BCE=∠BDA,AD=EC可得①正确,再根据角平分线和全等三角形的性质得出②正确;证出∠ADE=∠BEA,得出AD=AE,因此AD=AE=EC,③正确;根据三角形的三边关系得到④错误,即可得出结论.
解:①∵BD为△ABC的角平分线,
∴∠ABD=∠CBD,
在△ABD和△EBC中,,
∴△ABD≌△EBC(SAS),①正确;
②∵BD为△ABC的角平分线,BD=BC,BE=BA,
∴∠BCD=∠BDC=∠BAE=∠BEA,
∵△ABD≌△EBC,
∴∠BCE=∠BDA,AD=EC,
∴∠BCE+∠BCD=∠BDA+∠BDC=180°,②正确;
③由②得:∠BDC=∠BEA,
又∵∠ADE=∠BDC,
∴∠ADE=∠BEA,
∴AD=AE,
∴AD=AE=EC,③正确;
④∵AD=AE=EC,AE+CE>AD+CD,
∴AD>CD,
∴AC≠2CD,故④错误,
故选:C.
4.如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC,将△ABD沿AD所在直线翻折,点B在AC边上的落点记为点E.那么∠B等于( )
A.80°
B.60°
C.40°
D.30°
【分析】根据折叠的性质可得BD=DE,AB=AE,然后根据AC=AE+EC,AB+BD=AC,证得DE=EC,根据等边对等角以及三角形的外角的性质求解.
解:根据折叠的性质可得BD=DE,AB=AE.
∵AC=AE+EC,AB+BD=AC,
∴DE=EC.
∴∠EDC=∠C=20°,
∴∠AED=∠EDC+∠C=40°.
∴∠B=∠AED=40°
故选:C.
5.如图,在△ABC中,∠B=∠C=60°,点D在AB边上,DE⊥AB,并与AC边交于点E.如果AD=1,BC=6,那么CE等于( )
A.5
B.4
C.3
D.2
【分析】根据等边三角形的性质和含30°的直角三角形的性质解答即可.
解:∵在△ABC中,∠B=∠C=60°,
∴∠A=60°,
∵DE⊥AB,
∴∠AED=30°,
∵AD=1,
∴AE=2,
∵BC=6,
∴AC=BC=6,
∴CE=AC﹣AE=6﹣2=4,
故选:B.
6.如图,△ABC≌△AED,连接BE.若∠ABC=15°,∠D=135°,∠EAC=24°,则∠BEA的度数为( )
A.54°
B.63°
C.64°
D.68°
【分析】直接利用全等三角形的性质结合三角形内角和定理得出∠BAE=54°,进而得出答案.
解:∵△ABC≌△AED,∠D=135°
∴∠C=∠D=135°,AB=AE,
∴∠ABE=∠AEB,
∵∠ABC=15°,∠D=∠C=135°,
∴∠BAC=30°,
∵∠EAC=24°,
∴∠BAE=54°,
则∠BEA的度数为:×(180°﹣54°)=63°.
故选:B.
7.如图,点P是∠AOB的角平分线OC上一点,PE⊥OA,OE=10,点G是线段OP的中点,连接EG,点F是射线OB上的一个动点.若PF的最小值为4,则△PGE的面积为( )
A.5
B.10
C.20
D.40
【分析】根据角平分线的性质和直角三角形的性质解答即可.
解:∵点P是∠AOB的角平分线OC上一点,PE⊥OA,PF的最小值为4,
∴PE=4,
∵OE=10,
∴△OPE的面积=,
∵点G是线段OP的中点,
∴△PGE的面积=△OPE的面积=10,
故选:B.
8.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F,则下列结论成立的是( )
A.EC=EF
B.FE=FC
C.CE=CF
D.CE=CF=EF
【分析】求出∠CAF=∠BAF,∠B=∠ACD,根据三角形外角性质得出∠CEF=∠CFE,即可得出答案;
解:∵在Rt△ABC中,∠ACB=90°,CD⊥AB,
∴∠CDB=∠ACB=90°,
∴∠ACD+∠BCD=90°,∠BCD+∠B=90°,
∴∠ACD=∠B,
∵AF平分∠CAB,
∴∠CAE=∠BAF,
∴∠ACD+∠CAE=∠B+∠BAF,
∴∠CEF=∠CFE,
∴CE=CF.
故选:C.
9.如图,将一张三角形纸片ABC的一角折叠,使点A落在△ABC外的A'处,折痕为DE.如果∠A=α,∠CEA′=β,∠BDA'=γ,那么下列式子中正确的是( )
A.γ=2α+β
B.γ=α+2β
C.γ=α+β
D.γ=180°﹣α﹣β
【分析】根据三角形的外角得:∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',代入已知可得结论.
解:由折叠得:∠A=∠A',
∵∠BDA'=∠A+∠AFD,∠AFD=∠A'+∠CEA',
∵∠A=α,∠CEA′=β,∠BDA'=γ,
∴∠BDA'=γ=α+α+β=2α+β,
故选:A.
10.如图,在等腰△ABC与等腰△ADE中,AB=AC,AD=AE,∠BAC=∠DAE=α,连接BD和CE相交于点P,交AC于点M,交AD与点N.下列结论:①BD=CE;②∠BPE=180°﹣2α;③AP平分∠BPE;④若α=60°,则PE=AP+PD.其中一定正确的结论的个数是( )
A.1
B.2
C.3
D.4
【分析】由“SAS”可证△BAD≌△CAE,可得BD=CE;由全等三角形的性质可得∠ABD=∠ACE,由外角的性质和三角形内角和定理可得∠BPE=∠ACB+∠ABC=180°﹣α;由全等三角形的性质可得S△BAD=S△CAE,由三角形面积公式可得AH=AF,由角平分线的性质可得AP平分∠BPE;由全等三角形的性质可得∠BDA=∠CEA,由“SAS”可证△AOE≌△APD,可得AO=AP,可证△APO是等边三角形,可得AP=PO,可得PE=AP+PD,即可求解.
解:∵∠BAC=∠DAE=α,
∴∠BAD=∠CAE,且AB=AC,AD=AE,
∴△BAD≌△CAE(SAS)
∴BD=CE,故①符合题意;
∵△BAD≌△CAE,
∴∠ABD=∠ACE,
∵∠BAC=α,
∴∠ABC+∠ACB=180°﹣α,
∵∠BPE=∠PBC+∠PCB=∠PBC+∠ACB+∠ACP=∠PBC+∠ACB+∠ABP,
∴∠BPE=∠ACB+∠ABC=180°﹣α,故②不符合题意;
如图,过点A作AH⊥BD,AF⊥CE,
∵△BAD≌△CAE,
∴S△BAD=S△CAE,
∴BD×AH=CE×AF,且BD=CE,
∴AH=AF,且AH⊥BD,AF⊥CE,
∴AP平分∠BPE,故③符合题意;
如图,在线段PE上截取OE=PD,连接AO,
∵△BAD≌△CAE,
∴∠BDA=∠CEA,且OE=PD,AE=AD,
∴△AOE≌△APD(SAS)
∴AP=AO,
∵∠BPE=180°﹣α=120°,且AP平分∠BPE,
∴∠APO=60°,且AP=AO,
∴△APO是等边三角形,
∴AP=PO,
∵PE=PO+OE,
∴PE=AP+PD,故④符合题意.
故选:C.
二、填空题(共5小题,每小题3分,共15分)
11.一个等腰三角形一边长为3cm,另一边长为7cm,那么这个等腰三角形的周长是 17 cm.
【分析】题目给出等腰三角形有两条边长为3cm和7cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.
解:分两种情况:
当腰为3时,3+3<7,所以不能构成三角形;
当腰为7时,3+7>7,所以能构成三角形,周长是:3+7+7=17.
故答案为:17.
12.边长分别为a和b的两个正方形按如图的样式摆放,则图中的阴影部分的面积为 .
【分析】阴影部分的面积=两个正方形的面积之和﹣3个直角三角形的面积.
解:依题意得:S阴影=a2+b2﹣a(a+b)﹣b2﹣a(a﹣b)=.
故答案是:.
13.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=84°,则∠BDC= 96° .
【分析】首先过点D作DF⊥AB于E,DF⊥AC于F,易证得△DEB≌△DFC(HL),即可得∠BDC=∠EDF,又由∠EAF+∠EDF=180°,即可求得答案;
解:过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,
∵AD是∠BAC的平分线,
∴DE=DF,
∵DP是BC的垂直平分线,
∴BD=CD,
在Rt△DEB和Rt△DFC中,
,
∴Rt△DEB≌Rt△DFC(HL).
∴∠BDE=∠CDF,
∴∠BDC=∠EDF,
∵∠DEB=∠DFC=90°,
∴∠EAF+∠EDF=180°,
∵∠BAC=84°,
∴∠BDC=∠EDF=96°,
故答案为:96°.
14.如图,在Rt△ABC中,∠ACB=90°,BE平分∠ABC,CE⊥BE于点E,连接AE.若AC=BC=4,则△ABE的面积为 4 .
【分析】作EH⊥AB于H,EK⊥BC于K.在EB上取一点J,使得EJ=EC,连接CJ.设EC=EJ=m.利用勾股定理构建方程求出m,Q求出△BEC的面积,再根据====求解即可.
解:作EH⊥AB于H,EK⊥BC于K.在EB上取一点J,使得EJ=EC,连接CJ.设EC=EJ=m.
∵在Rt△ABC中,∠ACB=90°,AC=BC=4,
∴AB=,
∵BE平分∠ABC,CE⊥BE于点E,
∵∠ACB=45°,BE平分∠ABC,
∴∠CBE=22.5°,
∵EC=EJ=m,∠CEJ=90°,
∴∠EJC=45°,
∵∠EJC=∠JCB+∠JBC,
∴∠JCB=∠JBC=22.5°,
∴JC=JB=m,
∴EB=m+m,
∵EC2+EB2=BC2,
∴m2+(m+m)2=42,
∴m2=8﹣4,
∴S△ECB=?EC?EB=?m(m+m)=?(1+)m2=2,
∵EB平分∠ABC,EH⊥AB,EK⊥BC,
∴EH=EK,
∴====,
∴S△AEB=2×=4.
解法二:延长CE交AB于点F,证明△ABE的面积等于△ABC的一半,可得S△AEB=4.
故答案为4.
15.如图,在△ABC中,∠C=90°,∠A=30°,BC=3,P是AB上的一动点,PE⊥AC于E,沿PE将∠A折叠,点A的对应点为D,若△BPD是直角三角形,则PA= 2或4 .
【分析】分为点D在AC
上和点D在AC的延长线上两种情况画出图形,然后再证明△PBD为有一个角为30°的直角三角形,最后依据AP+PB=6列方程求解即可.
解:∵∠A=30°,∠C=90°,BC=3,
∴AB=6.
如图1所示:
由翻折的性质可知:AP=PD,
∴∠A=∠PDA=30°.
∴∠BPD=60°.
∵∠PDB=90°,
∴PD=PB,
∴AP+2AP=6,解得AP=2.
如图2所示:
由翻折的性质可知:AP=PD,
∴∠A=∠PDA=30°.
∴∠BPD=60°.
∵∠PBD=90°,
∴PB=PD,
∴AP+AP=6,解得AP=4.
综上所述,AP的长为2或4.
故答案为:2或4
三、解答题(共8小题,共75分)
16.如图,∠A=∠B,AE=BE,点D在AC边上,∠1=∠2,AE和BD相交于点O.
(1)求证:△AEC≌△BED;
(2)若∠1=40°,求∠BDE的度数.
【分析】(1)根据全等三角形的判定即可判断△AEC≌△BED;
(2)由(1)可知:EC=ED,∠C=∠BDE,根据等腰三角形的性质即可知∠C的度数,从而可求出∠BDE的度数;
【解答】证明:(1)∵AE和BD相交于点O,
∴∠AOD=∠BOE.
在△AOD和△BOE中,
∠A=∠B,∴∠BEO=∠2.
又∵∠1=∠2,
∴∠1=∠BEO,
∴∠AEC=∠BED.
在△AEC和△BED中,
,
∴△AEC≌△BED(ASA).
(2)∵△AEC≌△BED,
∴EC=ED,∠C=∠BDE.
在△EDC中,
∵EC=ED,∠1=40°,
∴∠C=∠EDC=70°,
∴∠BDE=∠C=70°.
17.已知△ABN和△ACM位置如图所示,∠B=∠C,AD=AE,∠1=∠2.求证:∠M=∠N.
【分析】由三角形内角和定理得出∠AEC=∠ADB,则∠NEO=∠MDO,再由三角形内角和定理即可得出结论.
【解答】证明:∵∠B=∠C,∠1=∠2,∠AEC=180°﹣∠2﹣∠C,∠ADB=180°﹣∠1﹣∠B,
∴∠AEC=∠ADB,
∴∠NEO=∠MDO,
∵∠NOE=∠MOD,∠M=180°﹣∠MDO﹣∠MOD,∠N=180°﹣∠NEO﹣∠NOE
∴∠M=∠N.
18.如图,在△ABC中,边AB的垂直平分线OM与边AC的垂直平分线ON交于点O,分别交BC于点D、E,已知△ADE的周长5cm.
(1)求BC的长;
(2)分别连接OA、OB、OC,若△OBC的周长为13cm,求OA的长.
【分析】(1)根据线段的垂直平分线的性质得到DA=DB、EA=EC,根据三角形的周长公式计算,得到答案;
(2)根据三角形的周长公式求出OB+OC,根据线段垂直平分线的性质得到OB=OC,计算即可.
解:(1)∵DM是线段AB的垂直平分线,
∴DA=DB,
同理,EA=EC,
∵△ADE的周长5,
∴AD+DE+EA=5,
∴BC=DB+DE+EC=AD+DE+EA=5(cm);
(2)∵△OBC的周长为13,
∴OB+OC+BC=13,
∵BC=5,
∴OB+OC=8,
∵OM垂直平分AB,
∴OA=OB,
同理,OA=OC,
∴OA=OB=OC=4(cm).
19.如图,△ABC是等边三角形,延长BC到E,使CE=BC.点D是边AC的中点,连接ED并延长ED交AB于F求证:
(1)EF⊥AB;
(2)DE=2DF.
【分析】(1)根据等边三角形的性质得出AC=BC,∠ACB=∠B=60°,求出CD=CE,根据三角形外角性质和等腰三角形的性质求出∠E=30°,求出∠BFE即可;
(2)连接BD,求出BD=DE,根据含30°角的直角三角形的性质得出BD=2DF,即可得出答案.
【解答】证明:(1)∵△ABC是等边三角形,
∴AC=BC,∠ACB=∠B=60°,
∵D为AC的中点,
∴AD=CD=AC,
∵CE=BC,
∴CD=CE,
∵∠E+∠CDE=∠ACB=60°,
∴∠E=∠CDE=30°,
∵∠B=60°,
∴∠EFB=180°﹣60°﹣30°=90°,
即EF⊥AB;
(2)连接BD,
∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∵D为AC的中点,
∴∠DBC=∠ABD=ABC=30°,
∵∠E=30°,
∴∠DBC=∠E,
∴DE=BD,
∵∠BFE=90°,∠ABD=30°,
∴BD=2DF,
即DE=2DF.
20.已知:如图,∠XOY=90°,点A、B分别在射线OX、OY上移动(不与点O重合),BE是∠ABY的平分线,BE的反向延长线与∠OAB的平分线相交于点C.
(1)当∠OAB=40°时,∠ACB= 45 度;
(2)随点A、B的移动,试问∠ACB的大小是否变化?如果保持不变,请给出证明;如果发生变化,请求出变化范围.
【分析】(1)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论;
(2)先利用角平分线得出∠CAB=∠OAB,∠EBA=∠YBA,再利用三角形的外角的性质即可得出结论.
解:(1)∵∠XOY=90°,∠OAB=40°,
∴∠ABY=130°,
∵AC平分∠OAB,BE平分∠YBA,
∴∠CAB=∠OAB=20°,∠EBA=∠YBA=65°,
∵∠EBA=∠C+∠CAB,
∴∠C=∠EBA﹣∠CAB=45°,
故答案为:45;
(2)∠ACB的大小不变化.
理由:∵AC平分∠OAB,BE平分∠YBA,
∴∠CAB=∠OAB,∠EBA=∠YBA,
∵∠EBA=∠C+∠CAB,
∴∠C=∠EBA﹣∠CAB=∠YBA﹣∠OAB=(∠YBA﹣∠OAB),
∵∠YBA﹣∠OAB=90°,
∴∠C=×90°=45°,
即:∠ACB的大小不发生变化.
21.如图1,点C在线段AB上,(点C不与A、B重合),分别以AC、BC为边在AB同侧作等边三角形ACD和等边三角形BCE,连接AE、BD交于点P.
【观察猜想】
①AE与BD的数量关系是 AE=BD ;
②∠APD的度数为 60° .
【数学思考】
如图2,当点C在线段AB外时,(1)中的结论①、②是否仍然成立?若成立,请给予证明;若不成立,请你写出正确结论再给予证明;
【拓展应用】
如图3,点E为四边形ABCD内一点,且满足∠AED=∠BEC=90°,AE=DE,BE=CE,对角线AC、BD交于点P,AC=10,则四边形ABCD的面积为 50 .
【分析】【观察猜想】:证明△ACE≌△DCB(SAS),可得AE=BD,∠CAO=∠ODP,由∠AOC=∠DOP,推出∠DPO=∠ACO=60°.
【数学思考】:结论成立,证明方法类似.
【拓展应用】:证明AC⊥BD,可得S四边形ABCD=?AC?DP+?AC?PB=?AC?(DP+PB)=?AC?BD.
解:【观察猜想】:结论:AE=BD.∠APD=60°.
理由:设AE交CD于点O.
∵△ADC,△ECB都是等边三角形,
∴CA=CD,∠ACD=∠ECB=60°,CE=CB,
∴∠ACE=∠DCB,
∴△ACE≌△DCB(SAS),
∴AE=BD,∠CAO=∠ODP,
∵∠AOC=∠DOP,
∴∠DPO=∠ACO=60°,
即∠APD=60°.
故答案为AE=BD,60°.
【数学思考】:结论仍然成立.
理由:设AC交BD于点O.
∵△ADC,△ECB都是等边三角形,
∴CA=CD,∠ACD=∠ECB=60°,CE=CB,
∴∠ACE=∠DCB
∴△ACE≌△DCB(SAS),
∴AE=BD,∠PAO=∠ODC,
∵∠AOP=∠DOC,
∴∠APO=∠DCO=60°,
即∠APD=60°.
【拓展应用】:
设AC交BE于点O.
∵△ADE,△ECB都是等腰直角三角形,
∴ED=EA,∠AED=∠BEC=90°,CE=EB,
∴∠AEC=∠DEB
∴△AEC≌△DEB(SAS),
∴AC=BD=10,∠PBO=∠OCE,
∵∠BOP=∠EOC,
∴∠BPO=∠CEO=90°,
∴AC⊥BD,
∴S四边形ABCD=?AC?DP+?AC?PB=?AC?(DP+PB)=?AC?BD=50.
故答案为50.
22.问题情境:如图①,在△ABD与△CAE中,BD=AE,∠DBA=∠EAC,AB=AC,易证:△ABD≌△CAE.(不需要证明)
特例探究:如图②,在等边△ABC中,点D、E分别在边BC、AB上,且BD=AE,AD与CE交于点F.求证:△ABD≌△CAE.
归纳证明:如图③,在等边△ABC中,点D、E分别在边CB、BA的延长线上,且BD=AE.△ABD与△CAE是否全等?如果全等,请证明;如果不全等,请说明理由.
拓展应用:如图④,在等腰三角形中,AB=AC,点O是AB边的垂直平分线与AC的交点,点D、E分别在OB、BA的延长线上.若BD=AE,∠BAC=50°,∠AEC=32°,求∠BAD的度数.
【分析】特例探究:利用等边三角形的三条边都相等、三个内角都是60°的性质推知AB=AC,∠DBA=∠EAC=60°,然后结合已知条件BD=AE,利用全等三角形的判定定理SAS证得△ABD≌△CAE.
归纳证明:△ABD与△CAE全等.利用等边三角形的三条边都相等、三个内角都是60°的性质以及三角形外角定理推知AB=AC,∠DBA=∠EAC=120°,然后结合已知条件BD=AE,利用全等三角形的判定定理SAS证得△ABD≌△CAE;
拓展应用:利用全等三角形(△ABD≌△CAE)的对应角∠BDA=∠AEC=32°,然后由三角形的外角定理求得∠BAD的度数.
【解答】特例探究:
证明:∵△ABC是等边三角形,
∴AB=AC,∠DBA=∠EAC=60°,
在△ABD与△CAE中,,
∴△ABD≌△CAE(SAS);
解:归纳证明:△ABD与△CAE全等.理由如下:
∵在等边△ABC中,AB=AC,∠ABC=∠BAC=60°,
∴∠DBA=∠EAC=120°.
在△ABD与△CAE中,,
∴△ABD≌△CAE(SAS);
拓展应用:∵点O在AB的垂直平分线上,
∴OA=OB,
∴∠OBA=∠BAC=50°,
∴∠EAC=∠DBE.
在△ABD与△CAE中,,
∴△ABD≌△CAE(SAS),
∴∠BDA=∠AEC=32°,
∴∠BAD=∠OBA﹣∠BDA=18°.
23.通过对下面数学模型的研究学习,解决下列问题:
【模型呈现】
(1)如图1,∠BAD=90°,AB=AD,过点B作BC⊥AC于点C,过点D作DE⊥AC于点E.由∠1+∠2=∠2+∠D=90°,得∠1=∠D.又∠ACB=∠AED=90°,可以推理得到△ABC≌△DAE.进而得到AC= DE ,BC= AE .我们把这个数学模型称为“K字”模型或“一线三等角”模型;
【模型应用】
(2)①如图2,∠BAD=∠CAE=90°,AB=AD,AC=AE,连接BC,DE,且BC⊥AH于点H,DE与直线AH交于点G.求证:点G是DE的中点;
②如图3,在平面直角坐标系xOy中,点A为平面内任一点,点B的坐标为(4,1).若△AOB是以OB为斜边的等腰直角三角形,请直接写出点A的坐标.
【分析】(1)根据全等三角形的性质即可得到结论;
(2)①如图2,作DM⊥AH于M,EN⊥AH于N,根据余角的性质得到∠B=∠1,根据全等三角形的性质得到AH=DM,同理AH=EN,求得EN=DM,由全等三角形的性质得到DG=EG,于是得到点G是DE的中点;
②如图3,过A作AD⊥y轴于D,过B作BE⊥x轴于E,DA与EB相交于C,根据余角的性质得到∠BAC=∠AOD,根据全等三角形的性质得到AD=BC,OD=AC,设AD=x,则BC=AD=x,于是得到结论.
解:(1)AC=DE,BC=AE;
故答案为:DE,AE;
(2)①如图2,作DM⊥AH于M,EN⊥AH于N,
∵BC⊥AH,
∴∠BHA=∠AMD=90°,
∵∠BAD=90°,
∴∠1+∠2=∠2+∠B=90°,
∴∠B=∠1,
在△ABH与△DAM中,,
∴△ABH≌△DAM(AAS),
∴AH=DM,
同理AH=EN,
∴EN=DM,
∵DM⊥AH,EN⊥AH,
∴∠GMD=∠GNE=90°,
在△DMG与△ENG中,,
∴△DMG≌△ENG(AAS),
∴DG=EG,
∴点G是DE的中点;
②如图3,过A作AD⊥y轴于D,过B作BE⊥x轴于E,DA与EB相交于C,
∴∠C=90°,
∵∠OAB=90°,
∴∠OAD+∠BAC=90°,
∵∠OAD+∠AOD=90°,
∴∠BAC=∠AOD,
在△AOD与△BAC中,,
∴△AOD≌△BAC(AAS),
∴AD=BC,OD=AC,
设AD=x,则BC=AD=x,
∴AC=OD=CE=x+1,
∴AD+AC=x+x+1=OE=4,
∴x=,x+1=,
∴点A的坐标(,);
如图4,同理可得,点A的坐标(,﹣),
综上所述,点A的坐标为(,)或(,﹣).