中小学教育资源及组卷应用平台
第二十一章
一元二次方程
21.2
解一元二次方程
21.2.3
因式分解法
学习目标:1.理解用因式分解法解方程的依据.
2.会用因式分解法解一些特殊的一元二次方程.
3.会根据方程的特点选用恰当的方法解一元二次方程.
重点:运用因式分解法解一些特殊的一元二次方程.
难点:根据方程的特点选用恰当的方法解一元二次方程.
一、知识链接
1.用公式法解一元二次方程的步骤有哪几步?
2.用学过的方法解一元二次方程(x-3)(x-5)=0.
二、要点探究
探究点1:因式分解法解一元二次方程
问题1
根据物理学规律,如果
(?http:?/??/?www.21cnjy.com?)把一个物体从地面以10
的速度竖直上抛,那么经过xs物体离地面的高度(单位:m)为10x-4.9x2.你能根据上述规律求出物体经过多少秒落回地面吗(精确到0.01s)?
思考1
除配方法或公式法以外,能否找到更简单的方法解方程10x-4.9x2=0?
思考2
解方程10x-4.9x2时,二次方程是如何降为一次的?
要点归纳:通过因式分解,将一个一元二次方程转化为两个一元一次方程来求解的方法叫做因式分解法.
试一试
下列各方程的根分别是多少?
(1)x(x-2)=0;
(2)
(y+2)(y-3)=0;
(3)
(3x+6)(2x-4)=0;
(4)
x2=x.21cnjy.com
典例精析
例1
(教材P14例3)解下列方程:
(1);
(2)
练一练
解下列方程:
(1)
(x+1)2=5x+5;
(2)x2-6x+9=(5-2x)2.21·cn·jy·com
拓展提升:十字相乘法
试一试
解方程x2+6x-7=0.
x2
+
6x
-7
-x+7x=6x
练一练
解下列方程:
(1)x2-5x+6=0;
(2)x2+4x-5=0;
(3)(x+3)(x-1)=5;
(4)2x2-7x+3=0.
探究点2:灵活选用方法解方程
例2
用适当的方法解方程:
(1)
3x(x+5)=5(x+5);
(2)
(5x+1)2=1;
(3)
x2-12x=4;
(4)
3x2
=
4x
+
1.
要点归纳:解法选择基本思路:
1.一般地,当一元二次方程一次项系数为0时(ax2+c=0),应选用直接开平方法;
2.若常数项为0(ax2+bx=0),应选用因式分解法;
3.若一次项系数和常数项都不为0
(ax2+
(?http:?/??/?www.21cnjy.com?)bx+c=0),先化为一般式,看左边的整式是否容易因式分解,若容易,宜选用因式分解法,否则选用公式法;2·1·c·n·j·y
4.不过当二次项系数是1,且一次项系数是偶数时,用配方法也较简单.
三、课堂小结
因式分解法
内容
概念
当右边=0时,将方程左边因式分解.
原理
如果a
·b=0,那么a=0或b=0.
步骤
简记歌诀:右化零
左分解两因式
各求解
1.填空.
①
x2-3x+1=0;
②
3x2-1=0;
③
-3t2+t=0;
④
x2-4x=2;
21
cnjy
com
⑤
2x2-x=0;
⑥
5(m+2)2=8;
⑦
3y2-y-1=0;
⑧
2x2+4x-1=0;【来源:21cnj
y.co
m】
⑨
(x-2)2=2(x-2).
适合运用直接开平方法
;
适合运用因式分解法
;
适合运用公式法
;
适合运用配方法
.
2.解方程x(x+1)=2
(?http:?/??/?www.21cnjy.com?)时,要先把方程化为
;再选择适当的方法求解,得方程的两根为x1=
,
x2=
.
21世纪教育网版权所有
3.下面的解法正确吗?如果不正确,错误在哪?并请改正过来.
解方程(x-5)(x+2)=18.
解:原方程化为:
(x-5)(x+2)=3×6.
①
由x-5=3,得x=8;②
由x+2=6,得x=4;
③
所以原方程的解为x1=8或x2=4.
4.解方程.
(1)
;
(2)
;
(3)2x2-5x+1=0;
【出处:21教育名师】
(4)x2+4x-2=2x+3;
(5)(3m+2)2-7(3m+2)+10=0.【版权所有:21教育】
5.把小圆形场地的半径增加5m得到大圆形场地,场地面积增加到原来的2倍,求小圆形场地的半径.
挑战自我
(1)已知三角形的两边长为4和5,第三边的长是方程x2-5x+6=0的一个根,则这个三角形的周长是________;
(2)一个三角形的两边长分别为3和5,其第三边是方程x2-13x+40=0的根,则此三角形的周长为________;
(3)已知等腰三角形的腰长、底边长分别是一元二次方程x2-7x+10=0的两根,则该等腰三角形的周长是________.21·世纪
教育网
参考答案
自主学习
1、知识链接
1.①变形:化已知方程为一般形式;②确定系数:用a,b,c写出各项系数;
③计算:b2-4ac的值;④判断:若b2-4ac≥0,则利用求根公式求出;若b2-4ac<0,则方程没有实数根.
2.解:方程整理得x2-8
(?http:?/??/?www.21cnjy.com?)x+15=0,配方得x2-8x+16=1,即(x-4)2=1.开平方,得x-4=1,或x-4=-1,解得x1=5,x2=3.
课堂探究
二、要点探究
探究点1:因式分解法解一元二次方程
问题1:解:设物体经过
x
s落回地面,这时它离地面的高度为0
m
,即10x-4.9x2
=0.
配方法解方程10x-4.9x2=0.
解:
公式法解方程10x-4.9x2=0.
解:方程可化为4.9x2-10x=0,
∵a=4.9,b=-10,c=0,∴b2-4ac=(-10)2-4×4.9×0=100.【来源:21·世纪·教育·网】
思考1
能
思考2
将方程10x-4.9x2=
(?http:?/??/?www.21cnjy.com?)0的左边进行因式分解,根据如果a
·
b
=
0,那么
a
=
0或
b
=
0.将方程转化为两个一次方程.21教育网
试一试
解:(1)
x1=0,x2=2;
(?http:?/??/?www.21cnjy.com?)(2)
y1=-2,y2=3
;(3)
x1=-2,x2=2;
(4)
x1=0,x2=1.
典例精析
例1
解:(1)因式分解,得(x-2)(x+1)=0.于是得x-2=0或x+1=0,x1=2,x2=-1.www-2-1-cnjy-com
(2)移项、合并同类项,得4x2-1=0,因式分解,得
(
2x+1)(
2x-1
)=0.2x+1=0或2x-1=0,
于是得
练一练
解:(1)∵(x+1)2=5(x+
(?http:?/??/?www.21cnjy.com?)1),∴(x+1)2-5(x+1)=0,则(x+1)(x-4)=0,∴x+1=0,或x-4=0,∴x1=4,x2=-1.
(2)方程整理得(x-3)2-(5-2x)2=0,则[(x-3)+(5-2x)][(x-3)-(5-2x)]=0,∴-x+2=0,或3x-8=0,
拓展提升:
试一试
(x+7)(x-1)
(x+7)(x-1)
x+7
x-1
-7
1
练一练
解:(1)分解因式,得(x-2)(x-3)=0,解得x1=2,x2=3;
(2)分解因式,得(x+5)(x-1)=0,解得x1=-5,x2=1;
(3)整理得x2+2x-8=0,分解因式,得(x+4)(x-2)=0,解得x1=-4,x2=2;
(4)解:分解因式,得(2x-1)(x-3)=0,解得
探究点2:灵活选用方法解方程
例2
解:(1)化简
(3x
-5)
(x
+
5)
=
0.即
3x
-
5
=
0
或
x
+
5
=
0.
(2)开平方,得5x
+
1
=
±1.
(3)配方,得x2
-
12x
+
62
=
4
+
62,即
(x
-
6)2
=
40.开平方,得2-1-c-n-j-y
(4)解:化为一般形式3x2-4x-1
=
0.
∵Δ=b2
-
4ac
=
28
>
0,
.
当堂检测
1.
②⑥
③⑤⑨
①⑦⑧
④
2.x2+x-2=0
-2
1
3.解:
原方程化为:
x2-3x-28=
0,
(x-7)(x+4)=0,
x1=7,x2=-4.www.21-cn-jy.com
4.解:(1)化为一般式为x2-2x+1
=
0.因式分解,得(
x-1
)
2
=
0.有
x
-
1
=
0,x1=x2=1.
(2)因式分解,得(
2x+11
)(
2x-11
)
=
0.有
2x
+11=
0或2x-11=
0,
(3)a=2,b=-5,c=1,∴Δ=(-5)2-4×2×1=17.
(4)整理,得x2+2x=5,∴x2+2x+1=5+1,即(x+1)2=6,
(5)解法一:方程整理得9m2-9m=0.分解因式,得9m(m-1)=0.解得m1=0,m2=1.
解法二:分解因式,得(3m+2-2)(3m+2-5)=0.∴3m+2-2=0,或3m+2-5=0,解得m1=0,m2=1.
5.
解:设小圆形场地的半径为r,根据题意
(
r
+
5
)2×π=2πr2.因式分解,得于是得
(舍去).答:小圆新场地的半径为
挑战自我
(1)11或12
(2)13
(3)12
自主学习
课堂探究
=_______________.
解:分解因式得_____________=0,
∴__________=0,或_________=0.
∴x1=_______,x2=____________.
x
x
7
-1
当堂检测
21世纪教育网
www.21cnjy.com
精品试卷·第
2
页
(共
2
页)
HYPERLINK
"http://21世纪教育网(www.21cnjy.com)
"
21世纪教育网(www.21cnjy.com)