2021-2022学年北师大版九年级数学上册《第2章一元二次方程》同步达标测评(附答案)
一.选择题(共8小题,满分40分)
1.下列方程中,一元二次方程共有( )个.
①x2﹣2x﹣1=0;②ax2+bx+c=0;③+3x﹣5=0;④﹣x2=0;⑤(x﹣1)2+y2=2;⑥(x﹣1)(x﹣3)=x2.
A.1
B.2
C.3
D.4
2.一元二次方程x2﹣6x﹣5=0配方后可变形为( )
A.(x﹣3)2=14
B.(x﹣3)2=4
C.(x+3)2=14
D.(x+3)2=4
3.已知关于x的一元二次方程(x+1)2﹣m=0有两个实数根,则m的取值范围是( )
A.m≥﹣
B.m≥0
C.m≥1
D.m≥2
4.一个等腰三角形的两条边长分别是方程x2﹣7x+10=0的两根,则该等腰三角形的周长是( )A.12
B.9
C.13
D.12或9
5.已知实数x满足(x2﹣x)2﹣4(x2﹣x)﹣12=0,则代数式x2﹣x+1的值是( )
A.7
B.﹣1
C.7或﹣1
D.﹣5或3
6.若关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,则k的取值范围是( )A.k<5
B.k<5,且k≠1
C.k≤5,且k≠1
D.k>5
7.某种品牌运动服经过两次降价,每件零售价由560元降为315元,已知两次降价的百分率相同,求每次降价的百分率.设每次降价的百分率为x,下面所列的方程中正确的是( )
A.560(1+x)2=315
B.560(1﹣x)2=315
C.560(1﹣2x)2=315
D.560(1﹣x2)=315
8.如图,某小区计划在一块长为32m,宽为20m的矩形空地上修建三条同样宽的道路,剩余的空地上种植草坪,使草坪的面积为570m2.若设道路的宽为xm,则下面所列方程正确的是( )
A.(32﹣2x)(20﹣x)=570
B.32x+2×20x=32×20﹣570
C.(32﹣x)(20﹣x)=32×20﹣570
D.32x+2×20x﹣2x2=570
二.填空题(共6小题,满分30分)
9.已知关于x的方程(m﹣1)xm2+1+2x﹣3=0是一元二次方程,则m的值为
.
10.将一元二次方程(x+1)(x+2)=0化成一般形式后的常数项是
.
11.已知m是关于x的方程x2﹣2x﹣3=0的一个根,则2m2﹣4m=
.
12.已知关于x的方程x2﹣6x+k=0的两根分别是x1,x2,且满足+=3,则k的值是
.
13.某楼盘2019年房价为每平方米8100元,经过两年连续降价后,2021年房价为7600元.设该楼盘这两年房价平均降低率为x,根据题意可列方程为
.
14.在一次新年聚会中,小朋友们互相赠送礼物,全部小朋友共互赠了110件礼物,若假设参加聚会小朋友的人数为x人,则根据题意可列方程为
.
三.解答题(共6小题,满分50分)
15.解方程:
(1)x2﹣3x﹣1=0.
(2)x2+4x﹣2=0.
16.已知关于x的方程mx2﹣(m+2)x+2=0.
(1)证明:不论m为何值时,方程总有实数根;
(2)m为何整数时,方程有两个不相等的正整数根.
17.已知等腰△ABC的三边长为a,b,c,其中a,b满足:a2+b2=6a+12b﹣45,求△ABC的周长.
18.如图,一农户要建一个矩形猪舍,猪舍的一边利用长为12m的住房墙,另外三边用25m长的建筑材料围成,为方便进出,在垂直于住房墙的一边留一个1m宽的门,所围矩形猪舍的长、宽分别为多少时,猪舍面积为80m2?
19.某商品现在的售价为每件60元,每星期可卖出300件.市场调查反映:每降价1元,每星期可多卖出20件.已知商品的进价为每件40元,在顾客得实惠的前提下,商家还想获得6080元的利润,应将销售单价定为多少元?
20.如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.
(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,经过几秒,使△PBQ的面积等于8cm2?
(2)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P,Q分别从A,B同时出发,线段PQ能否将△ABC分成面积相等的两部分?若能,求出运动时间;若不能说明理由.
(3)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C点出发以2cm/s的速度移动,P,Q同时出发,问几秒后,△PBQ的面积为1cm2?
参考答案
一.选择题(共8小题,满分40分)
1.解:①x2﹣2x﹣1=0,符合一元二次方程的定义;
②ax2+bx+c=0,没有二次项系数不为0这个条件,不符合一元二次方程的定义;
③+3x﹣5=0不是整式方程,不符合一元二次方程的定义;
④﹣x2=0,符合一元二次方程的定义;
⑤(x﹣1)2+y2=2,方程含有两个未知数,不符合一元二次方程的定义;
⑥(x﹣1)(x﹣3)=x2,方程整理后,未知数的最高次数是1,不符合一元二次方程的定义.
一元二次方程共有2个.
故选:B.
2.解:x2﹣6x﹣5=0,
x2﹣6x=5,
x2﹣6x+9=5+9,
(x﹣3)2=14,
故选:A.
3.解;(x+1)2﹣m=0,
(x+1)2=m,
∵一元二次方程(x+1)2﹣m=0有两个实数根,
∴m≥0,
故选:B.
4.解:x2﹣7x+10=0,
(x﹣2)(x﹣5)=0,
x﹣2=0,x﹣5=0,
x1=2,x2=5,
①等腰三角形的三边是2,2,5
∵2+2<5,
∴不符合三角形三边关系定理,此时不符合题意;
②等腰三角形的三边是2,5,5,此时符合三角形三边关系定理,三角形的周长是2+5+5=12;
即等腰三角形的周长是12.
故选:A.
5.解:∵(x2﹣x)2﹣4(x2﹣x)﹣12=0,
∴(x2﹣x+2)(x2﹣x﹣6)=0,
∴x2﹣x+2=0或x2﹣x﹣6=0,
∴x2﹣x=﹣2或x2﹣x=6.
当x2﹣x=﹣2时,x2﹣x+2=0,
∵b2﹣4ac=1﹣4×1×2=﹣7<0,
∴此方程无实数解.
当x2﹣x=6时,x2﹣x+1=7
故选:A.
6.解:∵关于x的一元二次方程(k﹣1)x2+4x+1=0有两个不相等的实数根,
∴,即,
解得:k<5且k≠1.
故选:B.
7.解:设每次降价的百分率为x,由题意得:
560(1﹣x)2=315,
故选:B.
8.解:设道路的宽为xm,根据题意得:(32﹣2x)(20﹣x)=570,
故选:A.
二.填空题(共6小题,满分30分)
9.解:由一元二次方程的定义得:m2+1=2,且m﹣1≠0,
解得:m=﹣1.
故答案为:﹣1.
10.解:(x+1)(x+2)=0,
x2+3x+2=0,
常数项为2,
故答案为:2.
11.解:∵m是关于x的方程x2﹣2x﹣3=0的一个根,
∴m2﹣2m﹣3=0,
∴m2﹣2m=3,
∴2m2﹣4m=6,
故答案为:6.
12.解:∵x2﹣6x+k=0的两个解分别为x1、x2,
∴x1+x2=6,x1x2=k,
+===3,
解得:k=2,
故答案为:2.
13.解:设该楼盘这两年房价平均降低率为x,根据题意列方程得:
8100×(1﹣x)2=7600,
故答案为:8100×(1﹣x)2=7600.
14.解:设有x人参加聚会,则每人送出(x﹣1)件礼物,
由题意得,x(x﹣1)=110.
故答案是:x(x﹣1)=110.
三.解答题(共6小题,满分50分)
15.解:(1)∵a=1,b=﹣3,c=﹣1,
∴b2﹣4ac=9+4=13,
∴x=,
∴方程的解为:x1=,x2=;
(2)移项得:x2+4x=2,
配方得:x2+4x+4=2+4,
即(x+2)2=6,
∴x+2=±,
∴x1=﹣2+,x2=﹣2﹣.
16.(1)证明:当m≠0时,Δ=(m+2)2﹣8m
=m2﹣4m+4
=(m﹣2)2,
∵不论m为何值时,(m﹣2)2≥0,
∴△≥0,
∴方程有实数根,
当m=0时,方程﹣2x+2=0,有实数根,
综上所述,不论m为何值时,方程总有实数根;
(2)解:解方程得,x=,
x1=,x2=1,
∵方程有两个不相等的正整数根,
∴m=1或2,m=2不合题意,
∴m=1.
17.解:a2+b2=6a+12b﹣45,
a2﹣6a+9+b2﹣12b+36=0,
(a﹣3)2+(b﹣6)2=0,
则a﹣3=0,b﹣6=0,
解得,a=3,b=6,
∵△ABC为等腰三角形,
∴三边长分别为3、6、6,
∴△ABC的周长为3+6+6=15.
18.解:设矩形猪舍垂直于住房墙一边长为xm可以得出平行于墙的一边的长为(25﹣2x+1)m,由题意得
x(25﹣2x+1)=80,
化简,得x2﹣13x+40=0,
解得:x1=5,x2=8,
当x=5时,26﹣2x=16>12(舍去),当x=8时,26﹣2x=10<12,
答:所围矩形猪舍的长为10m、宽为8m.
19.解:降价x元,则售价为(60﹣x)元,销售量为(300+20x)件,
根据题意得,(60﹣x﹣40)(300+20x)=6080,
解得x1=1,x2=4,
又顾客得实惠,故取x=4,即定价为56元,
答:应将销售单价定为56元.
20.解:(1)设经过x秒,使△PBQ的面积等于8cm2,依题意有
(6﹣x)?2x=8,
解得x1=2,x2=4,
经检验,x1,x2均符合题意.
故经过2秒或4秒,△PBQ的面积等于8cm2;
(2)设经过y秒,线段PQ能否将△ABC分成面积相等的两部分,依题意有
△ABC的面积=×6×8=24,
(6﹣y)?2y=12,
y2﹣6y+12=0,
∵Δ=b2﹣4ac=36﹣4×12=﹣12<0,
∴此方程无实数根,
∴线段PQ不能否将△ABC分成面积相等的两部分;
(3)①点P在线段AB上,点Q在线段CB上(0<x≤4),
设经过m秒,依题意有
(6﹣m)(8﹣2m)=1,
m2﹣10m+23=0,
解得m1=5+,m2=5﹣,
经检验,m1=5+不符合题意,舍去,
∴m=5﹣;
②点P在线段AB上,点Q在射线CB上(4<x≤6),
设经过n秒,依题意有
(6﹣n)(2n﹣8)=1,
n2﹣10n+25=0,
解得n1=n2=5,
经检验,n=5符合题意.
③点P在射线AB上,点Q在射线CB上(x>6),
设经过k秒,依题意有
(k﹣6)(2k﹣8)=1,
k2﹣10k+23=0,
解得k1=5+,k2=5﹣,
经检验,k1=5﹣不符合题意,舍去,
∴k=5+;
综上所述,经过(5﹣)秒,5秒,(5+)秒后,△PBQ的面积为1cm2.