北师版九年级数学上册
第三章 概率的进一步认识
单元测试训练卷
一、选择题(共8小题,4
8=32)
1.
小亮、小莹、大刚三位同学随机地站成一排合影留念,小亮恰好站在中间的概率是(
)
A.
B.
C.
D.
2.
一个不透明的袋子中有三个完全相同的小球,把它们分别标号为1,2,3,随机摸出一个小球,记下标号后放回,再随机摸出一个小球并记下标号,两次摸出的小球标号的和是偶数的概率是(
)
A.
B.
C.
D.
3.
学校新开设了航模、彩绘、泥塑三个社团,如果征征、舟舟两名同学每人随机选择参加其中一个社团,那么征征和舟舟选到同一社团的概率为(
)
A.
B.
C.
D.
4.
一项“过关游戏”规定:在过第n关时要将一枚质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2,则算过关;否则不算过关,则能过第二关的概率是(
)
A.
B.
C.
D.
5.
掷两枚普通正六面体骰子,所得点数之和为11的概率为(
)
A.
B.
C.
D.
6.
某种幼树在一定条件下移植成活的概率为0.9,下列说法正确的是( )
A.移植10棵幼树,结果一定是“9棵幼树成活”
B.移植100棵幼树,结果一定是“90棵幼树成活”和“10棵幼树不成活”
C.移植10n棵幼树,恰好有“n棵幼树不成活”
D.移植n棵幼树,当n越来越大时,幼树成活的频率会越来越稳定于0.9
7.
如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5
m,宽为4
m的矩形,将不规则图案围起来,然后在适当位置随机地朝矩形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或矩形区域外不计试验结果),他将若干次有效试验的结果绘制成了图②所示的折线统计图,由此他估计不规则图案的面积大约为(
)
A.6
m2
B.7
m2
C.8
m2
D.9
m2
8.
有三张正面分别写有数字-1,1,2的卡片,它们背面完全相同,现将这三张卡片背面朝上洗匀后随机抽取一张,以其正面的数字作为a的值,然后再从剩余的两张卡片中随机抽取一张,以其正面的数字作为b的值,则点(a,b)在第二象限的概率是(
)
A.
B.
C.
D.
二.填空题(共6小题,4
6=24)
9.在一个不透明的袋子里,有2个黑球和1个白球,除了颜色外全部相同,任意摸两个球,摸到1黑1白的概率是________.
10.
一个不透明的袋子中装有黑、白小球各两个,这些球除颜色外无其他差别,从袋子中随机摸出一个小球后,放回并摇匀,再随机摸出一个小球,则两次摸出的小球都是白球的概率是__
__.
11.
如图所示,小明和小龙玩转陀螺游戏,他们分别同时转动一个陀螺,当两个陀螺都停下来时,与桌面相接触的边上的数字都是奇数的概率是__
__.
12.
在x2□2xy□y2的□中,分别填上“+”或“-”,在所得的代数式中,能构成完全平方式的概率是________.
13.
做抛掷同一枚啤酒瓶盖的重复试验,经过统计得“凸面朝上”的频率约为0.44,则可以估计抛掷这枚啤酒瓶盖出现“凸面朝上”的概率约为__________.
14.
一个不透明的布袋内装有除颜色外,其余完全相同的3个红球,2个白球,1个黄球,搅匀后,从中随机摸出一个球,记下颜色后放回搅匀,再从中随机摸出一个球,则两次都摸到红球的概率为__
__.
三.解答题(共5小题,
44分)
15.(6分)
小明有2件上衣,分别为红色和蓝色,有3条裤子,其中2条为蓝色、1条为棕色.小明任意拿出1件上衣和1条裤子穿上.请用画树状图或列表的方法列出所有可能出现的结果,并求小明穿的上衣和裤子恰好都是蓝色的概率.
16.(8分)
甲、乙两个袋中均装有三张除所标数值外完全相同的卡片,甲袋中的三张卡片上所标有的三个数值为-7,-1,3.乙袋中的三张卡片所标的数值为-2,1,6.先从甲袋中随机取出一张卡片,用x表示取出的卡片上的数值,再从乙袋中随机取出一张卡片,用y表示取出卡片上的数值,把x,y分别作为点A的横坐标和纵坐标.
(1)用适当的方法写出点A(x,y)的所有情况;
(2)求点A落在第三象限的概率.
17.(8分)
如图,数轴上的点A,B,C,D表示的数分别为-3,-1,1,2,从A,B,C,D四点中任意取两点,求所取两点之间的距离为2的概率.
18.(10分)
甲、乙两个家庭来到以“生态资源,绿色旅游”为产业的美丽云南,各自随机选择到大理、丽江、西双版纳三个城市中的一个城市旅游.假设这两个家庭选择到哪个城市旅游不受任何因素影响,上述三个城市中的每一个被选到的可能性相同,甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率为P.
(1)直接写出甲家庭选择到大理旅游的概率;
(2)用列表法或树状图法(树状图也称树形图)中的一种方法,求P的值.
19.(12分)
有四张正面分别标有数2,1,-3,-4的不透明卡片,它们除所标数外其余全部相同,现将它们背面朝上,洗匀后从四张卡片中随机地摸取一张不放回,将该卡片上的数记为m,再随机地摸取一张,将该卡片上的数记为n.
(1)请画出树状图,并写出(m,n)所有可能的结果;
(2)求所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率.
参考答案
1-4BDCA
5-8ADBB
9.
10.
11.
12.
13.44%
14.
15.解:画树状图:
P(都是蓝色)==
16.(1)列表:
-7
-1
3
-2
(-7,-2)
(-1,-2)
(3,-2)
1
(-7,1)
(-1,1)
(3,1)
6
(-7,6)
(-1,6)
(3,6)
可知,点A共有9种情况 (2)由(1)知点A的坐标共有9种等可能的情况,点A落在第三象限(事件A)共有(-7,-2),(-1,-2)两种情况,∴P(A)=
17.解:画树状图为
共有12种等可能的结果数,其中所取两点之间的距离为2的结果数为4,所以所取两点之间的距离为2的概率==.
18.解:(1)甲家庭选择到大理旅游的概率为
(2)记到大理、丽江、西双版纳三个城市旅游分别为A,B,C,列表得:
由表格可知,共有9种等可能的结果,其中甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的有3种结果,所以甲、乙两个家庭选择到上述三个城市中的同一个城市旅游的概率P==
19.解:(1)画树状图如图所示.
则(m,n)所有可能的结果为(2,1),(2,-3),(2,-4),(1,2),(1,-3),(1,-4),(-3,2),(-3,1),(-3,-4),(-4,2),(-4,1),(-4,-3).
(2)∵所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的有(-3,-4),(-4,-3),
∴所选出的m,n能使一次函数y=mx+n的图象经过第二、三、四象限的概率为=.