24.3
正多边形和圆(第三单元)
学习目标:
1.理解并识记圆内接正多边形定义、圆内接正多边形正多边形中心、半径、中心角、边心距的概念
2.理解并识记圆内接正多边形与圆的关系。
课时安排:2课时
学习过程:
一、板书课题,揭示目标。
同学们,现在我们来学习第24.3正多边形和圆。
二、出示目标
(一)过渡语:学习目标是什么呢?请看:
(二)出示学习目标
学习目标:
1.理解并识记圆内接正多边形定义、圆内接正多边形正多边形中心、半径、中心角、边心距的概念
2.理解并识记圆内接正多边形与圆的关系。
三、指导自学
(一)过渡语:下面请同学们按照指导认真自学,比谁学得最好!
(二)出示自学指导
自学指导
认真看课本(P105--P106练习前),思考:
1._____相等,_______也相等的多边形叫做
正多边形.
思考:矩形是正多边形吗 菱形是正多边形吗 正方形是正多边形吗 为什么
2.课本P105将⊙O分成相等的五段弧,得到五边形ABCDE,
它是⊙
O的内接正五边形吗?为什么?
3.参照图24.3-3理解并熟记正多边形的定义、中心、半径、中心角、边心距的概念.
4.结合P106例题的解答过程,正多边形面积公式:___________________
如有疑问举手问老师或小声请教.
6分钟后,比谁能熟记本节课的概念并会做与例题类似的习题.
师:下面自学竞赛开始
四、先学
过渡语:自学指导明确的同学请举手?自学竞赛开始!
(一)学生看书,教师巡视,督促学生自学,不懂就问.
(二)检测
(1)过渡语:同学们,会背诵定义的请举手.
(2)提问
1.参照图24.3-3指出正多边形的中心、半径、中心角、边心距。
2.正多边形的中心角和外角的大小有什么关系?
3.正多边形的面积公式是S=
。
4、下列正多边形中,中心角等于内角的是
A、正六边形
B、
正五边形
C、正四边形
D、
正三边形
5、在半径为R的圆中,内接正方形与内接正六边形的边长之比为
6、正n边形的一个外角为20°,则该多边形共有
条对角线。
(指名回答,答错指名纠正,答对一步出示一步)
(3)书面检测
过渡语:下面,要检测看书的效果,比谁能正确运用新知识,按时、独立做对检测题。
1.求半径为2的圆内正三角形的边长、边心距和面积;
2.求半径为1的圆内正方形的边长、边心距和面积.
选做题:已知圆内接正三角形的面积为_________,则该圆的内接正六边形的边心距是_________.
要求:仿照例题
字体端正
书写规范
时间:10分钟
五、后教
(1)纠错
过渡语:同学们,做完的请举手?好,请同学们对照答案,自己评分,比谁能得满分。
1.白板逐题出示答案,对照公布的答案,同桌相互同步逐题判定,打出对(√)、错(×)符号,比谁全对。
2.调查学情:(1)全对的同学举手?表扬全对的学生.(2)有错的同学请举手?
过渡语:还有部分同学没有全对,我们来帮帮他们.(教师站在讲台指导全班学生认真看书,默背本节知识点,未全对的同学对照课本,思考自己错哪里,为什么错,由学生送错题卷.)
3.讨论纠错(白板展示相关错题,指名让做错的学生回答“错在哪里?为什么?应当怎么办?”不会的其他同学纠正、补充).
4.学生可能出错的地方:
概念不清,不能灵活运用。
六、当堂训练
(一)过渡语:同学们,要写作业了,希望每个同学都能牢记今天的易错点,比谁的作业能得满分.
(二)出示当堂训练题:
1.
正多边形都是____对称图形,正n边形有____条对称轴;正____数边形是中心对称图形,对称中心就是正多边形的____,正____数边形既是中心对称图形,又是轴对称图形.
2.
如图,要拧开一个边长为6mm的正六边形螺帽,扳手张开的开口b至少为多少?
选做题:如图,正方形的边长为4cm,剪去四个角后成为一个正八边形,求这个正八边形的边长和面积.
七.教学反思: