2.3 .1等差数列的前n项和(一)

文档属性

名称 2.3 .1等差数列的前n项和(一)
格式 zip
文件大小 49.0KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2012-07-30 21:29:09

图片预览

文档简介

2.3 .1等差数列的前n项和(一)
一、复习引入:
首先回忆一下前几节课所学主要内容:
1.等差数列的定义: -=d ,(n≥2,n∈N)
2.等差数列的通项公式:
(或=pn+q (p、q是常数))
3.几种计算公差d的方法:
① d=- ② d= ③ d=
4.等差中项:成等差数列
5.等差数列的性质: m+n=p+q (m, n, p, q ∈N )
6.数列的前n项和:
数列中,称为数列的前n项和,记.
“小故事”:
高斯是伟大的数学家,天文学家,高斯十岁时,有一次老师出了一道题目,老师说: “现在给大家出道题目:
1+2+…100= ”
过了两分钟,正当大家在:1+2=3;3+3=6;4+6=10…算得不亦乐乎时,高斯站起来回答说:
“1+2+3+…+100=5050
教师问:“你是如何算出答案的?
高斯回答说:因为1+100=101;
2+99=101;…50+51=101,所以
101×50=5050”
这个故事告诉我们:
(1)作为数学王子的高斯从小就善于观察,敢于思考,所以他能从一些简单的事物中发现和寻找出某些规律性的东西
(2)该故事还告诉我们求等差数列前n项和的一种很重要的思想方法,这就是下面我们要介绍的“倒序相加”法
二、讲解新课:
如图,一个堆放铅笔的V形架的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支,这个V形架上共放着多少支铅笔
1.等差数列的前项和公式1:
证明: ①

①+②:

∴ 由此得:
从而我们可以验证高斯十岁时计算上述问题的正确性
2. 等差数列的前项和公式2:
三、例题讲解
例1 一个堆放铅笔的V型的最下面一层放一支铅笔,往上每一层都比它下面一层多放一支,最上面一层放120支,这个V形架上共放着多少支铅笔?
例2 等差数列-10,-6,-2,2,…前多少项的和是54?
例3一凸n边形各内角的度数成等差数列,公差是10°,最小内角为100°,求边数n.
例4在等差数列中,已知,求前20项之和.
小结:在解决等差数列有关问题时,要熟练运用等差数列的一些性质.在本题的第二种解法中,利用这一性质,简化了计算,是解决这类问题的常用方法.
四.巩固练习
1.求集合的元素个数,并求这些元素的和
2.一个等差数列前4项的和是24,前5项的和与前2项的和的差是27,求这个等差数列的通项公式。
3.根据下列各题的条件,求相应等差数列的未知数.
1),, 求
2),求
3. ,,求
4. 在等差数列{}中,a2+a5=19 S5 =40 则a10为
(A)27 (B)28 (C)29 (D)30
5. 在等差数列{}中,d=2, =11, Sn =35 则a1为
(A)5或7 (B)3或5 (C)7或-1 (D)3或-1
6. 已知数列1,2,3,4,,2n, 则其和为__________ ,奇数项的和为 ________ 。
7.等差数列{an}的首项为,公差为d,项数为n,第n项为,前n项和为,请填写下表:
5 10 10
-2 8 104
-38 -10 -360
8.在等差数列中,,,求.