2021-2022学年鲁教版九年级数学上册《2.5三角函数的应用》优生辅导训练(附答案)
1.如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB的高度,他从古塔底部点B处前行30m到达斜坡CE的底部点C处,然后沿斜坡CE前行20m到达最佳测量点D处,在点D处测得塔顶A的仰角为30°,已知斜坡的斜面坡度i=1:,且点A,B,C,D,E在同一平面内,小明同学测得古塔AB的高度是( )
A.(10+20)m
B.(10+10)m
C.20m
D.40m
2.学校运动场的四角各有一盏探照灯,其中一盏探照灯B的位置如图所示,已知坡长AC=12m,坡角α为30°,灯光受灯罩的影响,最远端的光线与地面的夹角β为27°,最近端的光线恰好与地面交于坡面的底端C处,且与地面的夹角为60°,A、B、C、D在同一平面上.(结果精确到0.1m.参考数据:sin27°≈0.45,cos27°≈0.89,tan27°≈0.50,≈1.73.)
(1)求灯杆AB的高度;
(2)求CD的长度.
3.如图,在山坡AP的坡脚A处竖有一根电线杆AB(即AB⊥MN),为固定电线杆,在地面C处和坡面D处各装一根引拉线BC和BD,它们的长度相等,测得AC=6米,tan∠BCA=,∠PAN=30°,求点D到AB的距离.
4.万楼是湘潭历史上的标志性建筑,建在湘潭城东北、湘江的下游宋家桥.万楼的外形设计既融入了皇家大院、一类寺庙的庄严典雅,也吸收了江南民居诸如马头墙、猫拱背墙、灰瓦等特色,而最为独特的还是万楼“九五至尊”的结构.
某数学小组为了测量万楼主楼高度,进行了如下操作:用一架无人机在楼基A处起飞,沿直线飞行120米至点B,在此处测得楼基A的俯角为60°,再将无人机沿水平方向向右飞行30米至点C,在此处测得楼顶D的俯角为30°,请计算万楼主楼AD的高度.(结果保留整数,≈1.41,≈1.73)
5.如图,斜坡AB的坡角∠BAC=13°,计划在该坡面上安装两排平行的光伏板.前排光伏板的一端位于点A,过其另一端D安装支架DE,DE所在的直线垂直于水平线AC,垂足为点F,E为DF与AB的交点.已知AD=100cm,前排光伏板的坡角∠DAC=28°.
(1)求AE的长(结果取整数);
(2)冬至日正午,经过点D的太阳光线与AC所成的角∠DGA=32°,后排光伏板的前端H在AB上.此时,若要后排光伏板的采光不受前排光伏板的影响,则EH的最小值为多少(结果取整数)?
参考数据:≈1.41,≈1.73,≈2.45.
锐角A三角函数
13°
28°
32°
sinA
0.22
0.47
0.53
cosA
0.97
0.88
0.85
tanA
0.23
0.53
0.62
6.图①是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图②是其侧面结构示意图,托板长AB=115mm,支撑板长CD=70mm,板AB固定在支撑板顶点C处,且CB=35mm,托板AB可绕点C转动,支撑板CD可绕点D转动,∠CDE=60°.
(1)若∠DCB=70°时,求点A到直线DE的距离(计算结果精确到个位);
(2)为了观看舒适,把(1)中∠DCB=70°调整为90°,再将CD绕点D逆时针旋转,使点B落在直线DE上即可,求CD旋转的角度.
(参考数据:sin50°≈0.8,cos50°≈0.6,tan50°≈1.2,sin26.6°≈0.4,cos26.6°≈0.9,tan26.6°≈0.5,≈1.7)
7.一种可折叠的医疗器械放置在水平地面上,这种医疗器械的侧面结构如图实线所示,底座为△ABC,点B、C、D在同一条直线上,测得∠ACB=90°,∠ABC=60°,AB=32cm,∠BDE=75°,其中一段支撑杆CD=84cm,另一段支撑杆DE=70cm.求支撑杆上的点E到水平地面的距离EF是多少?(用四舍五入法对结果取整数,参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.732)
8.如图,为了测量河对岸两点A,B之间的距离,在河岸这边取点C,D.测得CD=80m,∠ACD=90°,∠BCD=45°,∠ADC=19°17′,∠BDC=56°19′.设A,B,C,D在同一平面内,求A,B两点之间的距离.
(参考数据:tan19°17′≈0.35,tan56°19′≈1.50.)
9.某种落地灯如图1所示,AB为立杆,其高为84cm;BC为支杆,它可绕点B旋转,其中BC长为54cm;DE为悬杆,滑动悬杆可调节CD的长度.支杆BC与悬杆DE之间的夹角∠BCD为60°.
(1)如图2,当支杆BC与地面垂直,且CD的长为50cm时,求灯泡悬挂点D距离地面的高度;
(2)在图2所示的状态下,将支杆BC绕点B顺时针旋转20°,同时调节CD的长(如图3),此时测得灯泡悬挂点D到地面的距离为90cm,求CD的长.(结果精确到1cm,参考数据:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36,sin40°≈0.64,cos40°≈0.77,tan40°≈0.84)
10.某公园为引导游客观光游览公园的景点,在主要路口设置了导览指示牌,某校“综合与实践”活动小组想要测量此指示牌的高度,他们绘制了该指示牌支架侧面的截面图如图所示,并测得AB=100cm,BC=80cm,∠ABC=120°,∠BCD=75°,四边形DEFG为矩形,且DE=5cm.请帮助该小组求出指示牌最高点A到地面EF的距离(结果精确到0.1cm.参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73,≈1.41).
11.如图1是某中学教学楼的推拉门,已知门的宽度AD=2米,且两扇门的大小相同(即AB=CD),将左边的门ABB1A1绕门轴AA1向里面旋转35°,将右边的门CDD1C1绕门轴DD1向外面旋转45°,其示意图如图2,求此时B与C之间的距离(结果保留一位小数).(参考数据:sin35°≈0.6,cos35°≈0.8,≈1.4)
12.图1是放置在水平地面上的落地式话筒架实物图,图2是其示意图.支撑杆AB垂直于地面l,活动杆CD固定在支撑杆上的点E处.若∠AED=48°,BE=110cm,DE=80cm,求活动杆端点D离地面的高度DF.(结果精确到1cm,参考数据:sin48°≈0.74,cos48°≈0.67,tan48°≈1.11)
13.一座吊桥的钢索立柱AD两侧各有若干条斜拉的钢索,大致如图所示.小明和小亮想用测量知识测较长钢索AB的长度.他们测得∠ABD为30°,由于B、D两点间的距离不易测得,通过探究和测量,发现∠ACD恰好为45°,点B与点C之间的距离约为16m.已知B、C、D共线,AD⊥BD.求钢索AB的长度.(结果保留根号)
14.图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB与地面DE平行,踏板CD长为1.5m,CD与地面DE的夹角∠CDE=15°,支架AC长为1m,∠ACD=75°,求跑步机手柄AB所在直线与地面DE之间的距离.(结果精确到0.1m.参考数据:sin15°≈0.26,cos15°≈0.97,tan15°≈0.27,≈1.73)
15.图1是疫情期间测温员用“额温枪”对小红测温时的实景图,图2是其侧面示意图,其中枪柄BC与手臂MC始终在同一直线上,枪身BA与额头保持垂直.量得胳膊MN=28cm,MB=42cm,肘关节M与枪身端点A之间的水平宽度为25.3cm(即MP的长度),枪身BA=8.5cm.
(1)求∠ABC的度数;
(2)测温时规定枪身端点A与额头距离范围为3~5cm.在图2中,若测得∠BMN=68.6°,小红与测温员之间距离为50cm.问此时枪身端点A与小红额头的距离是否在规定范围内?并说明理由.(结果保留小数点后一位)
(参考数据:sin66.4°≈0.92,cos66.4°≈0.40,sin23.6°≈0.40,≈1.414)
16.如图,在某小区内拐角处的一段道路上,有一儿童在C处玩耍,一辆汽车从被楼房遮挡的拐角另一侧的A处驶来,已知CM=3m,CO=5m,DO=3m,∠AOD=70°,汽车从A处前行多少米才能发现C处的儿童(结果保留整数)?
(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75;sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
17.我国纸伞的制作工艺十分巧妙.如图1,伞不管是张开还是收拢,伞柄AP始终平分同一平面内两条伞骨所成的角∠BAC,且AB=AC,从而保证伞圈D能沿着伞柄滑动.如图2是伞完全收拢时伞骨的示意图,此时伞圈D已滑动到点D'的位置,且A,B,D′三点共线,AD′=40cm,B为AD′中点.当∠BAC=140°时,伞完全张开.
(1)求AB的长.
(2)当伞从完全张开到完全收拢,求伞圈D沿着伞柄向下滑动的距离.
(参考数据:sin70°≈0.94,cos70°≈0.34,tan70°≈2.75)
18.拓展小组研制的智能操作机器人,如图1,水平操作台为l,底座AB固定,高AB为50cm,连杆BC长度为70cm,手臂CD长度为60cm.点B,C是转动点,且AB,BC与CD始终在同一平面内.
(1)转动连杆BC,手臂CD,使∠ABC=143°,CD∥l,如图2,求手臂端点D离操作台l的高度DE的长(精确到1cm,参考数据:sin53°≈0.8,cos53°≈0.6).
(2)物品在操作台l上,距离底座A端110cm的点M处,转动连杆BC,手臂CD,手臂端点D能否碰到点M?请说明理由.
19.我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB摆成如图1所示.已知AB=4.8m,鱼竿尾端A离岸边0.4m,即AD=0.4m.海面与地面AD平行且相距1.2m,即DH=1.2m.
(1)如图1,在无鱼上钩时,海面上方的鱼线BC与海面HC的夹角∠BCH=37°,海面下方的鱼线CO与海面HC垂直,鱼竿AB与地面AD的夹角∠BAD=22°.求点O到岸边DH的距离;
(2)如图2,在有鱼上钩时,鱼竿与地面的夹角∠BAD=53°,此时鱼线被拉直,鱼线BO=5.46m,点O恰好位于海面.求点O到岸边DH的距离.
(参考数据:sin37°=cos53°≈,cos37°=sin53°≈,tan37°≈,sin22°≈,cos22°≈,tan22°≈)
参考答案
1.解:过D作DF⊥BC于F,DH⊥AB于H,
∴DH=BF,BH=DF,
∵斜坡的斜面坡度i=1:,
∴=1:,
设DF=xm,CF=xm,
∴CD==2x=20(m),
∴x=10,
∴BH=DF=10m,CF=10m,
∴DH=BF=(10+30)m,
∵∠ADH=30°,
∴AH=DH=×(10+30)=(10+10)(m),
∴AB=AH+BH=(20+10)m,
故选:A.
2.解:(1)延长BA交CG于点E,
则BE⊥CG,
在Rt△ACE中,∠ACE=30°,AC=12m,
∴AE=AC=×12=6(m),CE=AC cosα=12×=6(m),
在Rt△BCE中,∠BCE=60°,
∴BE=CE tan∠BCE=6×=18(m),
∴AB=BE﹣AE=18﹣6=12(m);
(2)在Rt△BDE中,∠BDE=27°,
∴DE=≈=36(m),
∴CD=DE﹣CE=36﹣6≈25.6(m).
3.解:过点D作DE⊥AB于点E,
在Rt△ABC中,∠BAC=90°,tan∠BCA==,
则=,
解得:AB=8(米),
由勾股定理得:BC===10(米),
由题意得:BD=BC=10米,
∵AB⊥MN,DE⊥AB,
∴DE∥AN,
∴∠EDA=∠PAN=30°,
设AE为x米,
在Rt△ADE中,∠AED=90°,∠EDA=30°,tan∠EDA=,
∴DE==x(米),
在Rt△BDE中,BE2+ED2=BD2,即(8﹣x)2+(x)2=102,
整理得:x2﹣4x﹣9=0,
解得:x1,=2+,x2=2﹣(舍去),
∴DE=x=(2+)米,
答:点D到AB的距离为(2+)米.
4.解:由题意可得,
在Rt△ABE中,
∵AB=120米,∠ABE=60°,
∴BE===60(米),AE=sin60° AB=(米),
在Rt△CDE中,
∵∠DCE=30°,CE=BE+CB=60+30=90(米),
∴DE=tan30° CE==30(米),
∴AD=AE﹣DE=60=30≈52(米).
答:万楼主楼AD的高度约为52米.
5.解:(1)在Rt△ADF中,cos∠DAF=,
∴AF=AD cos∠DAF=100×cos28°=100×0.88=88(cm),
在Rt△AEF中,cos∠EAF=,
∴AE===≈91(cm);
(2)设DG交AB于M,过点A作AN⊥DG于N,如图所示:
∴∠AMN=∠MAG+∠DGA=13°+32°=45°,
在Rt△ADF中,DF=AD sin∠DAC=100×sin28°=100×0.47=47(cm),
在Rt△DFG中,tan∠DGA=,
∴tan32°=,
∴FG==≈75.8(cm),
∴AG=AF+FG=88+75.8=163.8(cm),
在Rt△AGN中,AN=AG sin∠DGA=163.8×sin32°=163.8×0.53≈86.8(cm),
∵∠AMN=45°,
∴△AMN为等腰直角三角形,
∴AM=AN≈1.41×86.8≈122.4(cm),
∴EM=AM﹣AE≈122.4﹣91≈31.4(cm),
当M、H重合时,EH的值最小,
∴EH的最小值约为32cm.
6.解:(1)过点C作CG∥DE,过点A作AH⊥CG于H,过点C作CF⊥DE于点F,
则点A到直线DE的距离为:AH+CF.
在Rt△CDF中,
∵sin∠CDE=,
∴CF=CD sin60°=70×=35≈59.5(mm).
∵∠DCB=70°,
∴∠ACD=180°﹣∠DCB=110°,
∵CG∥DE,
∴∠GCD=∠CDE=60°.
∴∠ACH=∠ACD﹣∠DCG=50°.
在Rt△ACH中,
∵sin∠ACH=,
∴AH=AC sin∠ACH=(115﹣35)×sin50°≈80×0.8=64(mm).
∴点A到直线DE的距离为AH+CF=59.5+64=123.5≈124(mm).
(2)如下图所示,虚线部分为旋转后的位置,B的对应点为B′,C的对应点为C′,
则B′C′=BC=35
mm,DC′=DC=70
mm.
在Rt△B′C′D中,
∵tan∠B′DC′==0.5,tan26.6°≈0.5,
∴∠B′DC′=26.6°.
∴CD旋转的角度为∠CDC′=∠CDE﹣∠B′DC′=60°﹣26.6°=33.4°.
7.解:方法一:如图1,过点D作DM⊥EF于M,过点D作DN⊥BA交BA延长线于N,
在Rt△ABC中,∠ABC=60°,AB=32(cm),
∴BC=AB cos60°=32×=16(cm),
∵DC=84(cm),
∴BD=DC+BC=84+16=100(cm),
∵∠F=90°,∠DMF=90°,
∴DM∥FN,
∴∠MDB=∠ABC=60°,
在Rt△BDN中,sin∠DBN=sin60°=,
∴DN=×100=50(cm),
∵∠F=90°,∠N=90°,∠DMF=90°,
∴四边形MFND是矩形,
∴DN=MF=50,
∵∠BDE=75°,∠MDB=60°,
∴∠EDM=∠BDE﹣∠MDB=75°﹣60°=15°,
∵DE=70(cm),
∴ME=DE sin∠EDM=70×sin15°≈18.2(cm),
∴EF=ME+MF=50+18.2≈104.8≈105(cm),
答:支撑杆上的点E到水平地面的距离EF大约是105cm.
方法二:如图2,过点D作DH⊥BA交BA延长线于H,过点E作EG⊥HD延长线于G,
在Rt△ABC中,∠ABC=60°,AB=32(cm),
∴BC=AB cos60°=32×=16(cm),
∵DC=84(cm),
∴BD=DC+BC=84+16=100(cm),
同方法一得,DH=BD sin60°=50(cm),
∵在Rt△BDH中,∠DBH=60°,
∴∠BDH=30°,
∵∠BDE=75°,
∴∠EDG=180°﹣∠BDH﹣∠BDE=180°﹣75°﹣30°=75°,
∴∠DEG=90°﹣75°=15°,
∴DG=DE sin15°≈18.2(cm),
∴GH=DG+DH=18.2+50≈104.8≈105(cm),
∵∠F=90°,∠H=90°,∠G=90°,
∴EF=GH≈105(cm),
答:支撑杆上的点E到水平地面的距离EF大约是105cm.
8.解:过B作BE⊥CD于E,过A作AF⊥BE于F,如图:
∵∠BCD=45°,
∴△BCE是等腰直角三角形,
设CE=x,则BE=x,
∵CD=80m,
∴DE=(80﹣x)m,
Rt△BDE中,∠BDC=56°19',
∴tan56°19'=,即=1.5,
解得x=48(m),
∴BE=CE=48m,
Rt△ACD中,∠ADC=19°17′,CD=80m,
∴tan19°17'=,即=0.35,
解得AC=28m,
∵∠ACD=90°,BE⊥CD于E,AF⊥BE,
∴四边形ACEF是矩形,
∴AF=CE=48m,EF=AC=28m,
∴BF=BE﹣EF=20m,
Rt△ABF中,AB===52(m),
答:A,B两点之间的距离是52m.
9.解:(1)过点D作DF⊥BC于F,
∵∠FCD=60°,∠CFD=90°,
∴FC=CD×cos60°=50×=25(cm),
∴FA=AB+BC﹣CF=84+54﹣25=113(cm),
答:灯泡悬挂点D距离地面的高度为113cm;
(2)如图3,过点C作CG垂直于地面于点G,过点B作BN⊥CG于N,过点D作DM⊥CG于M,
∵BC=54cm,
∴CN=BC×cos20°=54×0.94=50.76(cm),
∴MN=CN+MG﹣CG=50.76+90﹣50.76﹣84=6(cm),
∴CM=CN﹣MN=44.76(cm),
∴CD==≈58(cm),
答:CD的长为58cm.
10.解:过点A作AH⊥EF于点H,交直线DG于点M,过点B作BN⊥DG于点N,BP⊥AH于点P,则四边形BNMP和四边形DEHM均为矩形,如图所示:
∴PM=BN,MH=DE=5cm,
∴BP∥DG,
∴∠CBP=∠BCD=75°,
∴∠ABP=∠ABC﹣∠CBP=120°﹣75°=45°,
在Rt△ABP中,∠APB=90°,sin45°=,
∴AP=AB sin45°=100×=50cm,
在Rt△BCN中,∠BNC=90°,sin75°=,
∴BN=BC sin75°≈80×0.97=77.6cm,
∴PM=BN=77.6cm,
∴AH=AP+PM+MH=5077.6+5≈153.1cm.
答:指示牌最高点A到地面EF的距离约为153.1cm.
11.解:作BE⊥AD于点E,作CF⊥AD于点F,延长FC到点M,使得BE=CM,
∵AB=CD,AB+CD=AD=2,
∴AB=CD=1,
在Rt△ABE中,∠A=35°,AB=1,
∴BE=AB sinA=1×sin35°≈0.6,
∴AE=AB cosA=1×cos35°≈0.8,
在Rt△CDF中,∠D=45°,CD=1,
∴CF=CD sinD=1×sin45°≈0.7,
∴DF=CD cosD=1×cos45°≈0.7,
∵BE⊥AD,CF⊥AD,
∴BE∥CM,
又∵BE=CM,
∴四边形BEMC是平行四边形,
∴BC=EM,
在Rt△MEF中,FM=CF+CM=1.3,EF=AD﹣AE﹣FD=0.5,
∴EM==≈1.4,
答:B与C之间的距离约为1.4米.
12.解:如图,过点D作DG⊥AE于点G,得矩形GBFD,
∴DF=GB,
在Rt△GDE中,DE=80cm,∠GED=48°,
∴GE=DE×cos48°≈80×0.67=53.6(cm),
∴GB=GE+BE=53.6+110=163.6≈164(cm).
∴DF=GB=164(cm).
答:活动杆端点D离地面的高度DF为164cm.
13.解:在△ADC中,设AD=xm,
∵AD⊥BD,∠ACD=45°,
∴CD=AD=xm,
在△ADB中,AD⊥BD,∠ABD=30°,
∴AD=BD tan30°,
即x=(16+x)m,
解得:x=(8+8)m,
∴AB=2AD=2×(8)=(16)m,
∴钢索AB的长度为(16)m.
14.解:如图,过C点作FG⊥AB于F,交DE于G.
∵CD与地面DE的夹角∠CDE为15°,∠ACD为75°,
∴∠ACF=∠FCD﹣∠ACD=∠CGD+∠CDE﹣∠ACD=90°+15°﹣75°=30°,
∴∠CAF=60°,
在Rt△ACF中,CF=AC sin∠CAF=m,
在Rt△CDG中,CG=CD sin∠CDE=1.5 sin15°m,
∴FG=FC+CG=+1.5 sin15°≈1.3m.
故跑步机手柄AB所在直线与地面DE之间的距离约为1.3m.
15.解:(1)过点B作BH⊥MP,垂足为H,过点M作MI⊥FG,垂足为I,过点P作PK⊥DE,垂足为K,
∵MP=25.3cm,BA=HP=8.5cm,
∴MH=MP﹣HP=25.3﹣8.5=16.8(cm),
在Rt△BMH中,
cos∠BMH===0.4,
∴∠BMH=66.4°,
∵AB∥MP,
∴∠BMH+∠ABC=180°,
∴∠ABC=180°﹣66.4°=113.6°;
(2)∵∠BMN=68.6°,∠BMH=66.4°,
∴∠NMI=180°﹣∠BMN﹣∠BMH=180°﹣68.6°﹣66.4°=45°,
∵MN=28cm,
∴cos45°==,
∴MI≈19.80cm,
∵KI=50cm,
∴PK=KI﹣MI﹣MP=50﹣19.80﹣25.3=4.90≈4.9(cm),
∴此时枪身端点A与小红额头的距离是在规定范围内.
16.解:∵CM=3m,OC=5m,
∴OM==4(m),
∵∠CMO=∠BDO=90°,∠COM=∠BOD,
∴△COM∽△BOD,
∴,即,
∴BD==2.25(m),
∴tan∠AOD=tan70°=,
即≈2.75,
解得:AB=6m,
∴汽车从A处前行约6米才能发现C处的儿童.
17.解:(1)∵B为AD′中点,
∴AB=AD′,
∵AD′=40cm,
∴AB=20cm;
(2)如图,过点B作BE⊥AD于点E,
∵AB=BD,
∴AD=2AE,
∵AP平分∠BAC,∠BAC=140°,
∴∠BAE=BAC=70°,
在Rt△ABE中,AB=20cm
∴AE=AB cos70°≈20×0.34=6.8(cm),
∴AD=2AE=13.6(cm),
∵AD′=40cm,
∴40﹣13.6=26.4(cm).
∴伞圈D沿着伞柄向下滑动的距离为26.4cm.
18.解:(1)过点C作CP⊥AE于点P,过点B作BQ⊥CP于点Q,如图:
∵∠ABC=143°,
∴∠CBQ=53°,
在Rt△BCQ中,CQ=BC sin53°≈70×0.8=56cm,
∵CD∥l,
∴DE=CP=CQ+PQ=56+50=106cm.
(2)当B,C,D共线时,如图:
BD=60+70=130cm,AB=50cm,
在Rt△ABD中,AB +AD =BD ,
∴AD=120cm>110cm.
∴手臂端点D能碰到点M.
19.解:(1)过点B作BF⊥CH,垂足为F,延长AD交BF于E,垂足为E,则AE⊥BF,
由cos∠BAE=,
∴cos22°=,
∴,即AE=4.5m,
∴DE=AE﹣AD=4.5﹣0.4=4.1(m),
由sin∠BAE=,
∴,
∴,即BE=1.8m,
∴BF=BE+EF=1.8+1.2=3(m),
又,
∴,即CF=4m,
∴CH=CF+HF=CF+DE=4+4.1=8.1(m),即点O到岸边DH的距离为8.1m;
(2)过点B作BN⊥OH,垂足为N,延长AD交BN于点M,垂足为M,
由cos∠BAM=,
∴,
∴,
即AM=2.88m,
∴DM=AM﹣AD=2.88﹣0.4=2.48(m),
由sin∠BAM=,
∴,
∴,即BM=3.84m,
∴BN=BM+MN=3.84+1.2=5.04(m),
∴=(m),
∴OH=ON+HN=ON+DM=4.58(m),
即点O到岸边的距离为4.58m.