2021-2022学年人教版八年级数学上册《12.1全等三角形》同步能力提升训练(附答案)
1.如图,若△ABC≌△DEF,B、E、C、F在同一直线上,BC=7,EC=4,则CF的长是( )
A.2
B.3
C.5
D.7
2.如图,△ABC≌△DEF,∠A=90°,∠C=50°,则∠E的度数是( )
A.30°
B.40°
C.50°
D.90°
3.如图,△ABE≌△ACD,BC=10,DE=4,则DC的长是( )
A.8
B.7
C.6
D.5
4.如图,△ABC≌△EFD,则下列说法错误的是( )
A.FC=BD
B.EF平行且等于AB
C.AC平行且等于DE
D.CD=ED
5.在平面直角坐标系xOy中,点A(﹣3,0),B(2,0),C(﹣1,2),E(4,2),如果△ABC与△EFB全等,那么点F的坐标可以是( )
A.(6,0)
B.(4,0)
C.(4,﹣2)
D.(4,﹣3)
6.如图,锐角△ABC中,F、G分别是AB、AC边上的点,△ACF≌△ADF,△ABG≌△AEG,且DF∥BC∥GE,BG、CF交于点H,若∠BAC=40°,则∠BHC的大小是( )
A.95°
B.100°
C.105°
D.110°
7.如图,△ABE≌△ACD,BE,CD相交于点M.若∠BAC=70°,∠C=30°,则∠BMD的大小为( )
A.50°
B.65°
C.70°
D.80°
8.如图,若AB,CD相交于点E,若△ABC≌△ADE,∠BAC=28°,则∠B的度数是( )
A.28°
B.38°
C.45°
D.48°
9.如图,点E在AB上,AC与DE相交于点F,△ABC≌△DEC,∠A=20°,∠B=∠CEB=65°.则∠DFA的度数为( )
A.65°
B.70°
C.85°
D.110°
10.如图,△ABC≌△ADE,则下列结论正确的个数是( )
①AB=AD;②∠E=∠C;③若∠BAE=120°,∠BAD=40°,则∠BAC=80°;④BC=DE.
A.1
B.2
C.3
D.4
11.如图,△ABD与△EBC全等,点A和点E是对应点,AB=1,BC=3,则DE的长等于
.
12.如图,△ABC≌△ADE,且AE∥BD,∠BAD=96°,则∠BAC度数的值为
.
13.如图,△ABC≌△ADE,且∠EAB=112°,则∠EFC=
度.
14.三个全等三角形按如图的形式摆放,则∠1+∠2+∠3的度数等于
.
15.如图,在由6个相同的小正方形拼成的网格中,∠2﹣∠1=
°.
16.如图,△ABC≌△ADE,∠B=10°,∠AED=20°,AB=4cm,点C为AD中点.
(1)求∠BAE的度数和AE的长.
(2)延长BC交ED于点F,求∠DFC.
17.如图所示,已知△ABD≌△CFD,AD⊥BC于D.
(1)求证:CE⊥AB;
(2)已知BC=7,AD=5,求AF的长.
18.如图,点B,C,D在同一条直线上,∠B=∠D=90°,△ABC≌△CDE,AB=6,BC=8,CE=10.
(1)求△ABC的周长;
(2)求△ACE的面积.
19.如图,D、A、E三点在同一条直线上,BD⊥DE于点D,CE⊥DE于点E,且△ABD≌△CAE,AC=4.
(1)求∠BAC的度数;
(2)求△ABC的面积.
20.如图所示,△ABC≌△ADE,AB=AD,AC=AE,BC的延长线交DA于点F,交DE于点G,∠AED=105°,∠CAD=15°,∠B=30°,求∠1的度数.
参考答案
1.解:∵△ABC≌△DEF,BC=7,
∴EF=BC=7,
∴CF=EF﹣EC=3,
故选:B.
2.解:∵∠A=90°,∠C=50°,
∴∠B=180°﹣(∠A+∠C)=40°,
∵△ABC≌△DEF,
∴∠E=∠B=40°,
故选:B.
3.解:∵△ABE≌△ACD,
∴BE=CD,
∴BE+CD=BC+DE=14,
∴2CD=14,
∴CD=7,
故选:B.
4.解:A、∵△ABC≌△EFD,
∴FD=CB,
∴FD﹣CD=BC﹣CD,
即FC=BD,故此选项不合题意;
B、∵△ABC≌△EFD,
∴∠F=∠B,EF=AB,
∴EF∥AB,故此选项不合题意;
C、∵△ABC≌△EFD,
∴AC∥DE,AC=DE,故此选项不合题意;
D、不能证明CD=ED,故此选项符合题意;
故选:D.
5.解:如图所示:△ABC与△EFB全等,点F的坐标可以是:(4,﹣3).
故选:D.
6.解:延长EG交AB于Q,交AD于P,
∵△ACF≌△ADF,△ABG≌△AEG,∠BAC=40°,
∴∠DAF=∠BAC=40°,∠EAG=∠BAC=40°,∠D=∠ACF,∠E=∠ABG,
∴∠PAE=120°,
∴∠APE+∠E=60°,
∵DF∥EP,
∴∠APE=∠D,
∴∠APE=∠ACF,
∴∠ABG+∠ACF=60°,
∵∠BFH=∠BAC+∠ACF,
∴∠BHC=∠ABG+∠BFH=∠ABG+∠BAC+∠ACF=60°+40°=100°,
故选:B.
7.解:∵△ABE≌△ACD,∠C=30°,
∴∠B=∠C=30°,
∵∠BDM是△ADC的外角,
∴∠BDM=∠A+∠C=100°,
∴∠BMD=180°﹣∠BDM﹣∠B=180°﹣100°﹣30°=50°,
故选:A.
8.解:∵△ABC≌△ADE,∠BAC=28°,
∴AC=AE,∠DAE=∠BAC=28°,∠B=∠D,
∴∠AEC=∠ACE=×(180°﹣28°)=76°,
∵∠AEC是△ADE的一个外角,
∴∠D=∠AEC﹣∠DAE=76°﹣28°=48°,
∴∠B=∠D=48°,
故选:D.
9.解:∵△ABC≌△DEC,∠B=∠CEB=65°,
∴∠DEC=∠B=65°,
∴∠AEF=180°﹣65°﹣65°=50°,
∴∠DFA=∠A+∠AEF=20°+50°=70°,
故选:B.
10.解:∵△ABC≌△ADE,
∴AB=AD;∠E=∠C;BC=DE,∠BAC=∠DAE,
∴∠BAC﹣∠BAD=∠DAE﹣∠DAC,
即∠BAD=∠CAE,
∵∠BAE=120°,∠BAD=40°,
∴∠CAE=40°,
∴∠BAC=∠BAE﹣∠CAE=80°,
∴①②③④都正确,
故选:D.
11.解:∵△ABD≌△EBC,AB=1,BC=3,
∴BE=AB=1,BD=BC=3,
∴DE=BD﹣BE=3﹣1=2,
故答案为:2.
12.解:∵△ABC≌△ADE,∠BAD=96°,
∴AB=AD,∠BAC=∠DAE,
∴∠ABD=∠ADB=×(180°﹣96°)=42°,
∵AE∥BD,
∴∠DAE=∠ADB=42°,
∴∠BAC=∠DAE=42°,
故答案为:42°.
13.解:∵△ABC≌△ADE,∠EAB=112°,
∴∠EAD=DAB=56°,∠D=∠B,
∴∠ACB+∠B=180°﹣56°=124°,
∵∠ACB=∠FCD,
∴∠FCD+∠D=124°,
∵∠EFC是△FCD的一个外角,
∴∠EFC=∠FCD+∠D=124°,
故答案为:124.
14.解:如图所示:
由图形可得:∠1+∠4+∠5+∠8+∠6+∠2+∠3+∠9+∠7=540°,
∵三个三角形全等,
∴∠4+∠9+∠6=180°,
又∵∠5+∠7+∠8=180°,
∴∠1+∠2+∠3+180°+180°=540°,
∴∠1+∠2+∠3的度数是180°.
故答案为:180°.
15.解:如图所示:
由图可知△ABF与△CED全等,
∴∠BAF=∠ECD,
∴∠2﹣∠1=90°,
故答案为:90.
16.解:(1)∵△ABC≌△ADE,∠B=10°,AB=4cm,
∴∠ADE=∠B=10°,∠EAD=∠CAB,AD=AB=4cm,
∵∠AED=20°,
∴∠EAD=180°﹣∠EAD﹣∠AED=180°﹣10°﹣20°=150°,
∴∠CAB=150°,
∴∠EAB=360°﹣150°﹣150°=60°,
∵点C为AD中点,
∴AC=AD=×4=2(cm),
∴AE=2cm;
(2)∵∠B=10°,∠CAB=150°,
∴∠ACB=180°﹣150°﹣10°=20°,
∴∠FCD=20°,
∴∠DFC=180°﹣20°﹣10°=150°,
故答案为:150.
17.(1)证明:∵△ABD≌△CFD,
∴∠BAD=∠DCF,
又∵∠AFE=∠CFD,
∴∠AEF=∠CDF=90°,
∴CE⊥AB;
(2)解:∵△ABD≌△CFD,
∴BD=DF,
∵BC=7,AD=DC=5,
∴BD=BC﹣CD=2,
∴AF=AD﹣DF=5﹣2=3.
18.解:(1)∵△ABC≌△CDE,CE=10,
∴AC=CE=10,
∵AB=6,BC=8,
∴△ABC的周长=AB+BC+AC=6+8+10=24;
(2)∵∠B=90°,
∴∠ACB+∠BAC=90°,
∵△ABC≌△CDE,
∴∠ECD=∠CAB,
∴∠ACB+∠ECD=90°,
∴∠ACE=90°,
∵AC=CE=10,
∴△ACE的面积=×10×10=50.
19.解:(1)∵BD⊥DE,
∴∠D=90°,
∴∠DBA+∠BAD=90°,
∵△ABD≌△CAE,
∴∠DBA=∠CAE
∴∠BAD+∠CAE=90°,
∴∠BAC=90°;
(2)∵△ABD≌△CAE,
∴AC=AB=4,
∴△ABC的面积=×4×4=8.
20.解:∵△ABC≌△ADE,
∴∠AED=∠ACB=105°,∠D=∠B=30°,
∴∠ACF=180°﹣∠ACB=180°﹣105°=75°,
由三角形的内角和定理得,∠1+∠D=∠CAD+∠ACF,
∴∠1+30°=15°+75°,
解得∠1=60°.