2.4线段的垂直平分线 同步能力提升训练 2021-2022学年湘教版八年级数学上册(Word版 含答案)

文档属性

名称 2.4线段的垂直平分线 同步能力提升训练 2021-2022学年湘教版八年级数学上册(Word版 含答案)
格式 doc
文件大小 316.0KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2021-10-09 18:32:10

图片预览

文档简介

2021-2022年湘教版八年级数学上册《2.4线段的垂直平分线》同步能力提升训练(附答案)
一.选择题
1.在三角形中,一定能将其面积分成相等两部分的是(  )
A.中线 B.高线
C.角平分线 D.某一边的垂直平分线
2.在△ABC纸片上有一点P,且PA=PB,则P点一定(  )
A.是边AB的中点 B.在边AB的垂直平分线上
C.在边AB的高线上 D.在边AB的中线上
3.如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若BC=5,AC=4,则△ACE的周长为(  )
A.9 B.10 C.13 D.14
4.如图,在△ABC中,已知点D在BC上,且BD+AD=BC,则点D在(  )
A.AC的垂直平分线上 B.∠BAC的平分线上
C.BC的中点 D.AB的垂直平分线上
5.元旦联欢会上,同学们玩抢凳子游戏,在与A、B、C三名同学距离相等的位置放一个凳子,谁先抢到凳子谁获胜.如果将A、B、C三名同学所在位置看作△ABC的三个顶点,那么凳子应该放在△ABC的(  )
A.三边中线的交点 B.三条角平分线的交点
C.三边上高的交点 D.三边垂直平分线的交点
6.已知如图,△ABC中,AB=AC,AB的垂直平分线交AC于D,△ABC和△DBC的周长分别是60cm和38cm,则△ABC的腰和底边长分别为(  )
A.24cm和12cm B.16cm和22cm C.20cm和16cm D.22cm和16cm
7.下列命题中正确的命题有(  )
①线段垂直平分线上任一点到线段两端距离相等;②线段上任一点到垂直平分线两端距离相等;③经过线段中点的直线只有一条;④点P在线段AB外且PA=PB,过P作直线MN,则MN是线段AB的垂直平分线;⑤过线段上任一点可以作这条线段的中垂线.
A.1个 B.2个 C.3个 D.4个
8.如图,在△ABC中,DE垂直平分AC,若BC=22cm,AB=14cm,则△ABD的周长为(  )
A.24cm B.25cm C.30cm D.36cm
9.如图,AD⊥BC,BD=DC,点C在AE的垂直平分线上,则AB,AC,CE的长度关系为(  )
A.AB>AC=CE B.AB=AC>CE C.AB>AC>CE D.AB=AC=CE
二.填空题
10.如图,在△ABC中,MP,NQ分别垂直平分边AB,AC,交BC于点P,Q,如果BC=20,那么△APQ的周长为   .
11.如图,在△ABC中,DE和DF分别是边AB和AC的垂直平分线,且D点在BC边上,连接AD,则∠BAC=   °.
12.如图,AD是∠BAC的平分线,EF垂直平分AD交BC的延长线于点F,若∠FAC=65°,则∠B的度数为   .
13.如图,已知O为三边垂直平分线交点,∠BAC=60°,则∠BOC=   .
14.如图,在△ABC中,AB=AC,AB的垂直平分线交AC于点E,已知△BCE的周长是8,AC比BC长2,则AC长为   .
15.如图,在△ABC中,已知AC=16,AB的垂直平分线交AB于点D,交AC于点E,△BCE的周长等于30,则BC的长是   .
16.如图,在△ABC中,点D在BC边上,DE垂直平分AC边,垂足为E,若∠B=70°,且AB+BD=BC,则∠BAC的度数为   .
17.如图,线段AB、BC的垂直平分线l1、l2相交于点O,若∠1=39°,则∠AOC=   .
18.如图,在△ABC中,∠B=40°,∠C=45°,AB的垂直平分线交BC于点D,AC的垂直平分线交BC于点E,则∠DAE=   .
三.解答题
19.如图,在△ABC中,∠BAC=90°,BE平分∠ABC,AM⊥BC于点M交BE于点G,AD平分∠MAC,交BC于点D,交BE于点F.求证:线段BF垂直平分线段AD.
20.如图,AD是△ABC的角平分线,DE、DF分别是△ABD和△ACD的高,求证:AD垂直平分EF.
21.如图,Rt△ABC中,∠ACB=90°,D是AB上一点,BD=BC,过点D作AB的垂线交AC于点E,求证:BE垂直平分CD.
22.如图,△ABC中,AB的垂直平分线分别交AB、BC于点M、D,AC的垂直平分线分别交AC、BC于点N、E,△ADE的周长是7.
(1)求BC的长度;
(2)若∠B+∠C=60°,则∠DAE度数是多少?请说明理由.
23.如图,△ABC中,∠ABC=25°,∠ACB=55°,DE,FG分别为AB,AC的垂直平分线,E,G分别为垂足.
(1)直接写出∠BAC的度数;
(2)求∠DAF的度数;
(3)若BC的长为30,求△DAF的周长.
24.如图,△ABC中,∠C=90°,DE垂直平分AB,若∠B=25°,求∠CAE的度数.
25.如图,△ABC中,DE是AC的垂直平分线,△ABC的周长为21cm,△ABD的周长为13cm,求AE的长.
26.如图,直线l与m分别是△ABC边AC和BC的垂直平分线,l与m分别交边AB于点D和点E.
(1)若AB=10,则△CDE的周长是多少?为什么?
(2)若∠ACB=125°,求∠DCE的度数.
27.如图,E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,垂足分别是C、D.
求证:(1)OC=OD,
(2)OE是线段CD的垂直平分线.
28.如图,△ABC中,AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,且BD=DE.
(1)若∠BAE=40°,求∠C的度数;
(2)若△ABC周长13cm,AC=6cm,求DC长.
29.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
30.如图,已知△ABC中,AB<AC,BC边上的垂直平分线DE交BC于点D,交AC于E,若AC=9cm,△ABE的周长为16cm,求AB的长.
31.如图,在△ABC中,AB、AC边的垂直平分线相交于点O,分别交BC边于点M、N,连接AM,AN.
(1)若△AMN的周长为6,求BC的长;
(2)若∠MON=30°,求∠MAN的度数;
(3)若∠MON=45°,BM=3,BC=12,求MN的长度.
32.如图,四边形ABCD中,∠A=∠B=90°,AB=25cm,DA=15cm,CB=10cm.动点
E从A点出发,以2cm/s的速度向B点移动,设移动的时间为x秒.
(1)当x为何值时,点E在线段CD的垂直平分线上?
(2)在(1)的条件下,判断DE与CE的位置关系,并说明理由.
33.如图,在△ABC中,AD垂直平分BC,E是AB边上一点,连接ED,F是ED延长线上一点,连接CF,若BC平分∠ACF,求证:BE=CF.
34.如图,在△ABC中,∠C=90°,点P在AC上运动,点D在AB上,PD始终保持与PA相等,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断DE与DP的位置关系,并说明理由;
(2)若AC=6,BC=8,PA=2,求线段DE的长.
参考答案
1.解:根据同底等高的两个三角形面积相等可知,在三角形中,三角形的中线一定能将其面积分成相等两部分,
故选:A.
2.解:∵PA=PB,
∴P点在在边AB的垂直平分线上,
故选:B.
3.解:∵DE是线段AB的垂直平分线,
∴EA=EB,
∴△ACE的周长=EA+EC+AC=EB+EC+AC=BC+AC=9,
故选:A.
4.解:∵BD+DC=BC,BD+AD=BC,
∴DC=DA,
∴点D在AC的垂直平分线上,
故选:A.
5.解:∵三角形的三条垂直平分线的交点到三角形三个顶点的距离相等,
∴凳子应放在△ABC的三条垂直平分线的交点最合适.
故选:D.
6.解:∵AB的垂直平分线交AC于D,
∴AD=BD,
∴△DBC的周长=BD+CD+BC=AD+CD+BC=AC+BC,
∵△ABC和△DBC的周长分别是60cm和38cm,
∴AB=60﹣38=22cm,
∴BC=38﹣22=16cm,
即△ABC的腰和底边长分别为22cm和16cm.
故选:D.
7.解:①线段垂直平分线上任一点到线段两端距离相等,是线段垂直平分线的性质,符合逆定理,正确;
②错误;这是对线段垂直平分线的误解;
③有无数条,错误;
④点P在线段AB外且PA=PB,过P作直线MN⊥AB,则MN是线段AB的垂直平分线,错误;如图
⑤错误,这是对线段垂直平分线的误解;
故选:A.
8.解:∵DE垂直平分AC,
∴DA=DC,
∴△ABD的周长=AB+BD+AD=AB+BD+DC=AB+BC=36(cm).
故选:D.
9.解:AB=AC=CE,
理由:∵AD⊥BC,BD=DC,
∴AB=AC;
又∵点C在AE的垂直平分线上,
∴AC=EC,
∴AB=AC=CE.
故选:D.
10.解:∵MP和NQ分别为AB、AC的垂直平分线,
∴AP=BP,QA=QC,
∴△APQ的周长=PA+PQ+QA=PB+PQ+QC=BC=20,
故答案为:20.
11.解:∵DE和DF分别是边AB和AC的垂直平分线,
∴BD=AD,AD=CD,
∴∠B=∠BAD,∠C=∠CAD,
∵∠B+∠C+BAC=180°,
∴2∠BAD+2∠CAD=180°,
∴∠BAD+∠CAD=90°,
即∠BAC=90°,
故答案为:90.
12.解:∵AD平分∠CAB,
∴∠CAD=∠BAD,
设∠CAD=∠BAD=x°,
∵EF垂直平分AD,
∴FA=FD,
∴∠FDA=∠FAD,
∵∠FAC=65°,
∴∠FAD=∠FAC+∠CAD=65°+x°,
∵∠FDA=∠B+∠BAD=∠B+x°,
∴65°+x°=∠B+x°,
∴∠B=65°,
故答案为:65°.
13.解:∵已知点O为三边垂直平分线交点,
∴点O为△ABC的外心,
∴∠BOC=2∠BAC,
∵∠BAC=60°,
∴∠BOC=120°,
故答案为:120°.
14.解:∵AB的垂直平分线交AC于点E
∴EB=EA
∵△BCE的周长是8
∴BC+AC=8
∵AC比BC长2,
∴AC=5.
故填5.
15.解:∵DE垂直平分AB,
∴EA=EB.
△BCE的周长=BC+BE+EC=BC+AE+EC=BC+AC,
即 BC+16=30,
∴BC=14.
故答案为:14.
16.解:连接AD,
∵DE垂直平分AC,
∴AD=CD,
∵AB+BD=BC=BD+CD,
∴AB=CD,
∴AB=AD,
∴∠ADB=∠B=70°,
∴∠C=∠ADB=35°,
∴∠BAC=180°﹣∠B﹣∠C=75°,
故答案为:75°.
17.解:解法一:连接BO,并延长BO到P,
∵线段AB、BC的垂直平分线l1、l2相交于点O,
∴AO=OB=OC,∠BDO=∠BEO=90°,
∴∠DOE+∠ABC=180°,
∵∠DOE+∠1=180°,
∴∠ABC=∠1=39°,
∵OA=OB=OC,
∴∠A=∠ABO,∠OBC=∠C,
∵∠AOP=∠A+∠ABO,∠COP=∠C+∠OBC,
∴∠AOC=∠AOP+∠COP=∠A+∠ABC+∠C=2×39°=78°;
解法二:
连接OB,
∵线段AB、BC的垂直平分线l1、l2相交于点O,
∴AO=OB=OC,
∴∠AOD=∠BOD,∠BOE=∠COE,
∵∠DOE+∠1=180°,∠1=39°,
∴∠DOE=141°,即∠BOD+∠BOE=141°,
∴∠AOD+∠COE=141°,
∴∠AOC=360°﹣(∠BOD+∠BOE)﹣(∠AOD+∠COE)=78°;
故答案为:78°.
18.解:∵点D、E分别是AB、AC边的垂直平分线与BC的交点,
∴AD=BD,AE=CE,
∴∠B=∠BAD,∠C=∠CAE,
∵∠B=40°,∠C=45°,
∴∠B+∠C=85°,∠BAC=95°,
∴∠BAD+∠CAE=85°,
∴∠DAE=∠BAC﹣(∠BAD+∠CAE)=95°﹣85°=10°,
故答案为:10°
19.证明:∵∠BAC=90°,
∴∠ABC+∠C=90°,
∵AM⊥BC,
∴∠AMB=90°,
∴∠ABC+∠BAM=90°,
∴∠C=∠BAM,
∵AD平分∠MAC,
∴∠MAD=∠CAD,
∴∠BAM+∠MAD=∠C+∠CAD,
∵∠ADB=∠C+∠CAD,
∴∠BAD=∠ADB,
∴AB=BD,
∵BE平分∠ABC,
∴BF⊥AD,AF=FD,
即线段BF垂直平分线段AD.
20.证明:设AD、EF的交点为K,
∵AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF.
∵DE⊥AB,DF⊥AC,
∴∠AED=∠AFD=90°,
在Rt△ADE和Rt△ADF中,

∴Rt△ADE≌Rt△ADF(HL),
∴AE=AF.
∵AD是△ABC的角平分线
∴AD是线段EF的垂直平分线.
21.证明:∵∠ACB=90°,DE⊥AB,
∴∠ACB=∠BDE=90°,
在Rt△BDE和Rt△BCE中,

∴Rt△BDE≌Rt△BCE,
∴ED=EC,
∵ED=EC,BD=BC,
∴BE垂直平分CD.
22.解:(1)∵DM是线段AB的垂直平分线,
∴DA=DB,
同理,EA=EC,
∵△ADE的周长为7,
∴DA+DE+EA=7,
∴BC=DA+DE+EC=7;
(2)∠DAE度数是60°,
理由如下:∵DA=DB,EA=EC,
∴∠DAB=∠B,∠EAC=∠C,
∵∠B+∠C=60°,
∴∠ADE+∠AED=2∠B+2∠C=120°,
∴∠DAE=180°﹣120°=60°.
23.解:(1)∵∠ABC=25°,∠ACB=55°,
∴∠BAC=180°﹣∠ABC﹣∠ACB=100°;
(2)∵DE,FG分别为AB,AC的垂直平分线,
∴DA=DB,FA=FC,
∴∠DAB=∠ABC=25°,∠FAC=∠ACB=55°,
∴∠DAF=∠BAC﹣∠DAB﹣∠FAC=20°;
(3)△DAF的周长=DA+DF+FA=DB+DF+FC=BC=30.
24.解:∵DE垂直平分AB,
∴EA=EB,
∵∠B=25°,
∴∠EAB=∠B=25°,
∵∠C=90°,
∴∠CAB=65°,
∴∠CAE=65°﹣25°=40°.
25.解:∵DE是AC的垂直平分线,
∴AD=DC,AE=CE=AC,
∵△ABC的周长为21cm,
∴AB+BC+AC=21cm,
∵△ABD的周长为13cm,
∴AB+BD+AD=AB+BD+DC=AB+BC=13cm,
∴AC=8cm,
∴AE=4cm.
26.解:(1)△CDE的周长为10.
∵直线l与m分别是△ABC边AC和BC的垂直平分线,
∴AD=CD,BE=CE,
∴△CDE的周长=CD+DE+CE=AD+DE+BE=AB=10;
(2)∵直线l与m分别是△ABC边AC和BC的垂直平分线,
∴AD=CD,BE=CE,
∴∠A=∠ACD,∠B=∠BCE,
又∵∠ACB=125°,
∴∠A+∠B=180°﹣125°=55°,
∴∠ACD+∠BCE=55°,
∴∠DCE=∠ACB﹣(∠ACD+∠BCE)=125°﹣55°=70°.
27.证明:∵E是∠AOB的平分线上一点,EC⊥OA,ED⊥OB,
∴DE=CE,OE=OE,
在Rt△ODE与Rt△OCE中,,
∴Rt△ODE≌Rt△OCE(HL),
∴OC=OD;
(2)∵△DOC是等腰三角形,
∵OE是∠AOB的平分线,
∴OE是CD的垂直平分线.
28.解:(1)∵AD垂直平分BE,EF垂直平分AC,
∴AB=AE=EC,
∴∠C=∠CAE,
∵∠BAE=40°,
∴∠AED=70°,
∴∠C=∠AED=35°;
(2)∵△ABC周长13cm,AC=6cm,
∴AB+BE+EC=7cm,
即2DE+2EC=7cm,
∴DE+EC=DC=3.5cm.
29.解:(1)∵DM、EN分别垂直平分AC和BC,
∴AM=CM,BN=CN,
∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,
∵△CMN的周长为15cm,
∴AB=15cm;
(2)∵∠MFN=70°,
∴∠MNF+∠NMF=180°﹣70°=110°,
∵∠AMD=∠NMF,∠BNE=∠MNF,
∴∠AMD+∠BNE=∠MNF+∠NMF=110°,
∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,
∵AM=CM,BN=CN,
∴∠A=∠ACM,∠B=∠BCN,
∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.
30.解:∵ED是线段BC的垂直平分线,
∴BE=CE,
∴BE+AE=CE+AE=AC=9cm,
∵△ABE的周长为16cm,
∴AB=16﹣(BE+AE)=16﹣9=7cm.
31.解:(1)∵直线OM是AB的垂直平分线,
∴MA=MB,
同理,NA=NC,
∵△AMN的周长为6,
∴MA+MN+NA=6,即MB+MN+NC=BC=6;
(2)∵∠MON=30°,
∴∠OMN+∠ONM=150°,
∴∠BME+∠CNF=150°,
∵MA=MB,ME⊥AB,
∴∠BMA=2∠BME,
同理,∠ANC=2∠CNF,
∴∠BMA+∠ANC=300°,
∴∠AMN+∠ANM=360°﹣300°=60°,
∴∠MAN=180°﹣60°=120°;
(3)由(2)的作法可知,∠MAN=90°,
由(1)可知,MA=MB=3,NA=NC
设MN=x,
∴NA=NC=12﹣3﹣x=9﹣x,
由勾股定理得,MN2=AM2+AN2,即x2=32+(9﹣x)2,
解得,x=5,即MN=5.
32.解:(1)设AE=acm,则BE=(25﹣a)cm,
∵点E在线段CD的垂直平分线上,
∴DE=CE,
由勾股定理得:AD2+AE2=DE2,BC2+BE2=CE2,
∴AD2+AE2=BC2+BE2,
即152+a2=102+(25﹣a)2,
解得:a=10,
即AE=10(cm),
∴x==5,
即当x=5时,点E在线段CD的垂直平分线上;
(2)DE与CE的位置关系是DE⊥CE,
理由是:∵△ADE≌△BEC,
∴∠ADE=∠CEB,
∵∠A=90°,
∴∠ADE+∠AED=90°,
∴∠AED+∠CEB=90°,
∴∠DEC=180°﹣(∠AED+∠CEB)=90°,
∴DE⊥CE.
33.证明:∵AD垂直平分BC,
∴AB=AC,BD=DC,
∴∠ABC=∠ACB,
∵BC平分∠ACF,
∴∠FCB=∠ACB,
∴∠ABC=∠FCB,
在△BDE和△CDF中,

∴△BDE≌△CDF(ASA)
∴BE=CF.
34.解:(1)DE⊥DP,
理由如下:∵PD=PA,
∴∠A=∠PDA,
∵EF是BD的垂直平分线,
∴EB=ED,
∴∠B=∠EDB,
∵∠C=90°,
∴∠A+∠B=90°,
∴∠PDA+∠EDB=90°,
∴∠PDE=180°﹣90°=90°,
∴DE⊥DP;
(2)连接PE,设DE=x,则EB=ED=x,CE=8﹣x,
∵∠C=∠PDE=90°,
∴PC2+CE2=PE2=PD2+DE2,
∴42+(8﹣x)2=22+x2,
解得:x=4.75,
则DE=4.75.