四川省金堂县实验中学
2021秋九上数学质量监测题三第三章概率的进一步认识
本试卷分A类和B类,满分120分;考试时间90分钟.其中A类19个题,B类(标有*)3个题.
一、选择题(每小题3分,共30分)
1(2021 永州)小明计划到永州市体验民俗文化,想从“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化中任意选择两项,则小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为( )
A. B. C. D.
2.(2021 威海)在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为( )
A. B. C. D.
3.从-2,-1,2这三个数中任取两个不同的数相乘,积为正数的概率是( )
A. B. C. D.
4.(2021 杭州)某轨道列车共有3节车厢,设乘客从任意一节车厢上车的机会均等.某天甲、乙两位乘客同时乘同一列轨道列车,则甲和乙从同一节车厢上车的概率是( )
A. B. C. D.
5.为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下:
身高x/cm x<160 160≤x<170 170≤x<180 x≥180
人数 60 260 550 130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于170cm的概率是( )
A.0.32 B.0.55 C.0.68 D.0.87
6.在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球50次,其中10次摸到黑球,则估计盒子中大约有白球( )
A.12个 B.16个 C.20个 D.30个
7.(2020 邵阳)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为5m,宽为4m的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计试验结果),他将若干次有效试验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )
A.6m2 B.7m2 C.8m2 D.9m2
8.(2021 安徽)如图在三条横线和三条竖线组成的图形中,任选两条横线和两条竖线都可以围成一个矩形,从这些矩形中任选一个,则所选矩形含点A的概率是( )
A. B. C. D.
9.在一个不透明的袋子里装有四个小球,球上分别标有6,7,8,9四个数字,这些小球除数字外都相同.甲、乙两人玩“猜数字”游戏,甲先从袋中任意摸出一个小球,将小球上的数字记为m,再由乙猜这个小球上的数字,记为n.如果m,n满足|m-n|≤1,那么就称甲、乙两人“心领神会”,则两人“心领神会”的概率是( )
A. B. C. D.
10.从1、-2、3、-4四个数中随机选取两个不同的数,分别记为、,则一次函数一定过一、三、四象限的概率为( )
A. B. C. D.
二、填空题(11-14每小题4分,15-16每题5分,共26分)
11.某班联欢会上,设有一个摇奖节目,奖品为钢笔、图书和糖果,标于一个转盘的相应区域上(转盘被均匀等分为四个区域,如图所示),转盘可以自由转动.参与者转动转盘,当转盘停止时,指针落在哪一区域,就获得哪种奖品,则获得钢笔的概率为 .
12.(2021 通辽)如图所示,电路连接完好,且各元件工作正常.随机闭合开关S1,S2,S3中的两个,能让两个小灯泡同时发光的概率是 .
13.(2021 大连)一个不透明的口袋中有两个完全相同的小球,把它们分别标号为1,2.随机摸取一个小球后,放回并摇匀,再随机摸取一个小球,两次取出的小球标号的和等于4的概率为 ..
14.(2021 聊城)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是 .
*15.任取不等式组的一个整数解,则能使关于的一元二次方程:有实数根的概率为 .
*16.(2021 成都)我们对一个三角形的顶点和边都赋给一个特征值,并定义:从任意顶点出发,沿顺时针或逆时针方向依次将顶点和边的特征值相乘,再把三个乘积相加,所得之和称为此三角形的顺序旋转和或逆序旋转和.如图1,ar+cq+bp是该三角形的顺序旋转和,ap+bq+cr是该三角形的逆序旋转和.已知某三角形的特征值如图2,若从1,2,3中任取一个数作为x,从1,2,3,4中任取一个数作为y,则对任意正整数z,此三角形的顺序旋转和与逆序旋转和的差都小于4的概率是 .
三、解答题(17-19题和22题每题10分,20-21每题12分,共64分)
17.(10分)(2021 吉林)第一盒中有1个白球、1个黑球,第二盒中有1个白球,2个黑球.这些球除颜色外无其他差别,分别从每个盒中随机取出1个球,用画树状图或列表的方法,求取出的2个球都是白球的概率.
18.(10分)(2021 通辽)如图,甲、乙两个转盘均被分成3个面积相等的扇形,每个扇形中都标有相应的数字,同时转动两个转盘(当指针指在边界线上时视为无效,需重新转动转盘),当转盘停止后,把甲、乙两个转盘中指针所指数字分别记为x,y.请用树状图或列表法求点(x,y)落在平面直角坐标系第一象限内的概率.
19.(10分)(2021 无锡)将4张分别写有数字1、2、3、4的卡片(卡片的形状、大小、质地都相同)放在盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片.求下列事件发生的概率.(请用“画树状图”或“列表”等方法写出分析过程)
(1)取出的2张卡片数字相同;
(2)取出的2张卡片中,至少有1张卡片的数字为“3”.
20.(12分)(2021 玉林)2021年是中国共产党建党100周年华诞.“五一”后某校组织了八年级学生参加建党100周年知识竞赛,为了了解学生对党史知识的掌握情况,学校随机抽取了部分同学的成绩作为样本,把成绩按不及格、合格、良好、优秀四个等级分别进行统计,并绘制了如下不完整的条形统计图与扇形统计图:
请根据图中提供的信息解答下列问题:
(1)根据给出的信息,将这两个统计图补充完整(不必写出计算过程);
(2)该校八年级有学生650人,请估计成绩未达到“良好”及以上的有多少人?
(3)“优秀”学生中有甲、乙、丙、丁四位同学表现突出,现从中派2人参加区级比赛,求抽到甲、乙两人的概率.
21.(12分)(2021 铜仁市)某校开展主题为“防疫常识知多少”的调查活动,抽取了部分学生进行调查,调查问卷设置了A:非常了解、B:比较了解、C:基本了解、D:不太了解四个等级,要求每个学生填且只能填其中的一个等级,采取随机抽样的方式,并根据调查结果绘制成如图所示不完整的频数分布表和频数分布直方图,根据以上信息回答下列问题:
等级 频数 频率
A 20 0.4
B 15 b
C 10 0.2
D a 0.1
(1)频数分布表中a= ,b= ,将频数分布直方图补充完整;
(2)若该校有学生1000人,请根据抽样调查结果估算该校“非常了解”和“比较了解”防疫常识的学生共有多少人?
(3)在“非常了解”防疫常识的学生中,某班有5个学生,其中3男2女,计划在这5个学生中随机抽选两个加入防疫志愿者团队,请用列表或画树状图的方法求所选两个学生中至少有一个女生的概率.
*22.(10分)(2021 本溪)为迎接建党100周年,某校组织学生开展了党史知识竞赛活动.竞赛项目有:A.回顾重要事件;B.列举革命先烈;C.讲述英雄故事;D.歌颂时代精神.学校要求学生全员参加且每人只能参加一项,为了解学生参加竞赛情况,随机调查了部分学生,并将调查结果绘制成如下两幅不完整的统计图,请你根据图中信息解答下列问题:
(1)本次被调查的学生共有 名;
(2)在扇形统计图中“B项目”所对应的扇形圆心角的度数为 ,并把条形统计图补充完整;
(3)从本次被调查的小华、小光、小艳、小萍这四名学生中,随机抽出2名同学去做宣讲员,请用列表或画树状图的方法求出恰好小华和小艳被抽中的概率.
PAGE
九年级数学上(三) 第 1 页 共 32 页参考答案
一、1、D 2、C 3、B 4、C 5、C 6、B 7、B 8、D 9、B 10、B
二、11、 12、 13、 14、 *15 、 *16、
17解:用列表法表示所有可能出现的结果情况如下:
共有6种等可能出现的结果情况,其中两球都是白球的有1种,
所以取出的2个球都是白球的概率为.
答:取出的2个球都是白球的概率为.
18、解:画树状图如图:
共有9种等可能的结果,点(x,y)落在平面直角坐标系第一象限内的结果有4种,
∴点(x,y)落在平面直角坐标系第一象限内的概率为.
19、解:(1)画树状图如图:
共有16种等可能的结果,取出的2张卡片数字相同的结果有4种,
∴取出的2张卡片数字相同的概率为=;
(2)由(1)可知,共有16种等可能的结果,取出的2张卡片中,至少有1张卡片的数字为“3”的结果有7种,
∴取出的2张卡片中,至少有1张卡片的数字为“3”的概率为.
20.解:(1)抽取的学生人数为:2÷5%=40(人),
则达到“良好”的学生人数为:40×40%=16(人),达到“合格”的学生所占的百分比为:10÷40×100%=25%,
达到“优秀”的学生所占的百分比为:12÷40×100%=30%,
将两个统计图补充完整如下:
(2)650×(5%+25%)=195(人),
答:估计成绩未达到“良好”及以上的有195人;
(3)画树状图如图:
共有12种等可能的结果,抽到甲、乙两人的结果有2种,
∴抽到甲、乙两人的概率为=.
21、解:(1)20÷0.4=50(人),
a=50×0.1=5(人),
b=15÷50=0.3,
故答案为:5,0.3;
(2)1000×(0.4+0.3)=700(人),
答:该校1000学生中“非常了解”和“比较了解”防疫常识的学生大约有700人;
(3)用列表法表示所有可能出现的结果情况如下:
共有20种等可能出现的结果情况,其中两人中至少有一名女生的有14种,
所以两个学生中至少有一个女生的概率为=.
答:两个学生中至少有一个女生的概率为.
*22、解:解:(1)本次被调查的学生共有:9÷15%=60(名);
(2)B项目的人数有:60﹣9﹣12﹣24=15(人),
图中“B项目”所对应的扇形圆心角的度数为:360°×=90°;
补全统计图如下:
(3)根据题意列表如下:
小华 小光 小艳 小萍
小华 (小光,小华) (小艳,小华) (小萍,小华)
小光 (小华,小光) (小艳,小光) (小萍,小光)
小艳 (小华,小艳) (小光,小艳) (小萍,小艳)
小萍 (小华,小萍) (小光,小萍) (小艳,小萍)
由表格可以看出,所有可能出现的结果有12种,并且它们出现的可能性相等,其中恰好小华和小艳被抽中的情况有2种.
则恰好小华和小艳被抽中的概率是=.