中小学教育资源及组卷应用平台
第二十四章 圆
24.4 弧长和扇形面积
第1课时 弧长和扇形面积
学习目标:1.理解弧长和扇形面积公式的探求过程.
2.会利用弧长和扇形面积的计算公式进行计算.
重点:会利用弧长和扇形面积的计算公式进行计算.
难点:理解弧长和扇形面积公式的探求过程并会应用解决问题.
一、知识链接
1.小学里学习过圆周长和圆面积的计算公式,公式分别是什么呢?
2. 想一想什么叫弧长?什么叫扇形?
二、要点探究
探究点1:与弧长相关的计算
问题1 半径为R的圆,周长是多少?
问题2 下图中各圆心角所对的弧长分别是圆周长的几分之几
( http: / / www.21cnjy.com )
要点归纳:在半径为r的圆中,因为360°的圆心角所对的弧长就是圆周长C=2πr,所以1°的圆心角所对的弧长是,即,于是n°的圆心角所对的弧长为.【来源:21·世纪·教育·网】
算一算 已知弧所对的圆心角为60°,半径是4,则弧长为 .
典例精析
例1 (教材P111例1) ( http: / / www.21cnjy.com )制造弯形管道时,要先按中心线计算“展直长度”,再下料,试计算图所示管道的展直长度L.(单位:mm,精确到1mm)2-1-c-n-j-y
( http: / / www.21cnjy.com )
练一练 一滑轮起重机装置(如图), ( http: / / www.21cnjy.com )滑轮的半径=10cm,当重物上升15.7cm时,滑轮的一条半径绕轴心逆时针方向旋转多少度(假设绳索与滑轮之间没有滑动,π取3.14)?【来源:21cnj*y.co*m】
( http: / / www.21cnjy.com )
探究点2:与扇形面积相关的计算
概念学习 圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫做扇形.如图,黄色部分是一个扇形,记作扇形OAB.21cnjy.com
( http: / / www.21cnjy.com )
问题1 半径为的圆,面积是多少?
问题2 下图中各扇形面积分别是圆面积的几分之几,具体是多少呢
( http: / / www.21cnjy.com )
要点归纳:在半径为r的圆中,因为360°的圆心角所对的扇形面积就是圆面积S=πr2,所以圆心角是1°的扇形面积是,于是圆心角为n°的扇形面积为.21*cnjy*com
问题3 扇形面积与哪些因素有关?
问题4 扇形的弧长公式与面积公式有联系吗?
例2 如图,圆心角为60°的扇形的半径为10cm.求这个扇形的面积和周长.(分别精确到0.01cm2和0.01cm)
( http: / / www.21cnjy.com )
试一试
1.已知半径为2cm的扇形,其弧长为cm,则这个扇形的面积S扇= .
2.已知扇形的圆心角为150°,半径为3,则这个扇形的面积S扇= .
例3 (教材P112例2)如图,水平 ( http: / / www.21cnjy.com )放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.3m,求截面上有水部分的面积.(结果保留小数点后两位)2·1·c·n·j·y
( http: / / www.21cnjy.com )
要点归纳:弓形的面积=扇形的面积±三角形的面积.
( http: / / www.21cnjy.com )
3、课堂小结
弧长和扇形面积 弧长 计算公式:
扇形定义 圆的一条弧和经过这条弧的端点的两条半径所围成的图形叫做扇形.
扇形面积公式 扇形面积为或.
弓形面积计算公式 弓形的面积=扇形的面积±三角形的面积.
1.已知弧所对的圆周角为90°,半径是4,则弧长为 .
2.某扇形的圆心角为72°,面积为5π,则此扇形的弧长为( )
A.π B.2π C.3π D.4π21世纪教育网版权所有
3.如图,∠ACB是⊙O的圆周角,若⊙O的半径为10,∠ACB=45°,则扇形AOB的面积为( )
A.5π B.12.5π C.20π D.25π21·cn·jy·com
( http: / / www.21cnjy.com ) ( http: / / www.21cnjy.com )
第3题图 第4题图
4.如图,☉A、☉B、 ☉C、 ☉D两两不相交,且半径都是2cm,则图中阴影部分的面积是( )
A.6π cm2 B.8π cm2 C.9π cm2 D.12π cm2 www.21-cn-jy.com
5. (教材P112例2变式题)如图、水平放置的圆柱形排水管道的截面半径是0.6m,其中水面高0.9m,求截面上有水部分的面积.21·世纪*教育网
( http: / / www.21cnjy.com )
6. 如图,一个边长为10cm的等边三角 ( http: / / www.21cnjy.com )形模板在水平桌面上绕顶点按顺时针方向旋转到△A'B'C的位置,求顶点从开始到结束所经过的路程为多少.21教育网
( http: / / www.21cnjy.com )
参考答案
自主学习
1、知识链接
1.半径为r的圆,其周长为2πr,面积为 πr2.
2.弧长为圆周长的一部分,扇形为组成圆心角的两条半径和圆心角所对的弧围成的图形.
课堂探究
二、要点探究
探究点1:与弧长相关的计算
问题1:C=2πR
问题2 :
( http: / / www.21cnjy.com )
算一算
典例精析
例1 解:由弧长公式,可得弧AB的长因此所要求的展直长度L=2×700+1570=2970(mm). 【出处:21教育名师】
答:管道的展直长度为2970mm.
练一练 解:设半径OA绕轴心O逆时针方向旋转的度数为n°.解得 n≈90°.因此,滑轮旋转的角度约为90°.【版权所有:21教育】
探究点2:与扇形面积相关的计算
问题1 S=πr2
问题2
( http: / / www.21cnjy.com )
比例:
扇形面积:
问题3 扇形圆心角度数,半径
问题4 扇形弧长为l,半径为r,则S扇形=
例2 解:∵n=60,r=10cm,∴扇形的面积为
扇形的周长为
试一试: 1.cm2 2.
例3 解:如图,连接OA,OB,过点O作弦AB的垂线,垂足为D,交 于点C,连接AC.∵ OC=0.6 m, DC=0.3 m, ∴ OD=OC- DC=0.3 m,∴ OD=DC.又 AD ⊥DC,∴AD是线段OC的垂直平分线,∴AC=AO=OC.从而 ∠AOD=60 ,∠AOB=120 .在Rt△AOD中,OA=0.6 m,OD=0.3 m,∴AD= m.∴AB=2AD=m.有水部分的面积:S=S扇形OAB - SΔOAB=www-2-1-cnjy-com
当堂检测
1.2π 2.B 3.D 4.D
5.解:S=S扇形+S△OAB=
6.解:由图可知,由于∠A'CB'=60°,则等边三角形木板绕点C按顺时针方向旋转了120°,即∠ACA' =120°,这说明顶点A经过的路程长等于弧AA' 的长.∵等边三角形ABC的边长为10cm,∴弧AA' 所在圆的半径为10cm.∴l弧AA' =21教育名师原创作品
答:顶点A从开始到结束时所经过的路程为
自主学习
课堂探究
当堂检测
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)