专题复习10:牛顿第二定律 两类动力学问题
1.如图所示,老鹰沿虚线MN斜向下减速俯冲的过程中,空气对老鹰的作用力可能是图中的( )
A.F1 B.F2
C.F3 D.F4
2.如图所示,小车沿水平面做直线运动,小车内光滑底面上有一物块被压缩的弹簧压向左壁,小车向右加速运动。若小车向右加速度增大,则车左壁受物块的压力F1和车右壁受弹簧的压力F2的大小变化是( )
A.F1不变,F2变大 B.F1变大,F2不变
C.F1、F2都变大 D.F1变大,F2减小
3.如图所示,车内轻绳AB与BC拴住一小球,BC水平,开始车在水平面上向右匀速直线运动,现突然刹车做匀减速直线运动,小球仍处于图中所示的位置,则( )
A.AB绳、BC绳拉力都变小
B.AB绳拉力变大,BC绳拉力不变
C.AB绳拉力不变,BC绳拉力变小
D.AB绳拉力不变,BC绳拉力变大
4.如图所示,光滑的水平面上有一小车,以向右的加速度a做匀加速运动,车内两物体A、B质量之比为2∶1,A、B间用弹簧相连并放在光滑桌面上,B通过质量不计的轻绳与车相连,剪断轻绳的瞬间,A、B的加速度大小分别为( )
A.a、0 B.a、a
C.a、2a D.0、2a
5.乘坐“空中缆车”饱览大自然的美景是旅游者绝妙的选择.若某一缆车沿着坡度为30°的山坡以加速度a上行,如图所示.在缆车中放一个与山坡表面平行的斜面,斜面上放一个质量为m的小物块,小物块相对斜面静止(设缆车保持竖直状态运行).则( )
A.小物块受到的摩擦力方向平行斜面向上
B.小物块受到的摩擦力方向平行斜面向下
C.小物块受到的滑动摩擦力为mg+ma
D.小物块受到的静摩擦力为ma
6.如图所示,轻弹簧两端拴接两个质量均为m的小球a、b,拴接小球的细线固定在天花板上,两球静止,两细线与水平方向的夹角均为α=30°,弹簧水平,以下说法正确的是( )
A.细线拉力大小为mg
B.弹簧的弹力大小为mg
C.剪断左侧细线瞬间,b球加速度大小为g
D.剪断左侧细线瞬间,a球加速度大小为g
7.(多选)如图所示,A、B、C三球的质量均为m,轻质弹簧一端固定在斜面顶端、另一端与A球相连,A、B间由一轻质细线连接,B、C间由一轻杆相连.倾角为θ的光滑斜面固定在地面上,弹簧、细线与轻杆均平行于斜面,初始系统处于静止状态,细线被烧断的瞬间,下列说法正确的是( )
A.A球的加速度沿斜面向上,大小为gsin θ
B.C球的受力情况未变,加速度为0
C.B、C两球的加速度均沿斜面向下,大小均为gsin θ
D.B、C之间杆的弹力大小为0
8. (多选)如图所示,某杂技演员在做手指玩耍盘子的高难度表演.若盘的质量为m,手指与盘之间的动摩擦因数为μ,重力加速度为g,设最大静摩擦力等于滑动摩擦力,盘底处于水平状态且不考虑盘的自转.则下列说法正确的是( )
A.若手指支撑着盘,使盘保持静止状态,则手指对盘的作用力等于mg
B.若手指支撑着盘并一起水平向右匀速运动,则盘受到水平向右的静摩擦力
C.若手指支撑着盘并一起水平向右匀加速运动,则手指对盘的作用力大小为μmg
D.若盘随手指一起水平匀加速运动,则手指对盘的作用力大小不可超过mg
9.(多选)如图所示,在动摩擦因数μ=0.2的水平面上,质量m=2 kg的物块与水平轻弹簧相连,物块在与水平方向成θ=45°角的拉力F作用下处于静止状态,此时水平面对物块的弹力恰好为零.g取10 m/s2,以下说法正确的是( )
A.此时轻弹簧的弹力大小为20 N
B.当撤去拉力F的瞬间,物块的加速度大小为8 m/s2,方向向左
C.若剪断弹簧右端,则剪断的瞬间物块的加速度大小为8 m/s2,方向向右
D.若剪断弹簧右端,则剪断的瞬间物块的加速度为0
10.如图所示,一倾角θ=37°的足够长斜面固定在水平地面上。当t=0时,滑块以初速度v0=10 m/s沿斜面向上运动。已知滑块与斜面间的动摩擦因数μ=0.5,g=10 m/s2,sin 37°=0.6,cos 37°=0.8,下列说法正确的是( )
A.滑块一直做匀变速直线运动
B.t=1 s时,滑块速度减为零,然后在斜面上向下运动
C.t=2 s时,滑块恰好又回到出发点
D.t=3 s时,滑块的速度大小为4 m/s
11.如图甲所示,劲度系数为k的轻弹簧竖直放置,下端固定在水平地面上,一质量为m的小球,从离弹簧上端高h处自由下落,接触弹簧后继续向下运动.若以小球开始下落的位置为原点,沿竖直向下建立一坐标轴Ox,小球的速度v随x变化的图象如图乙所示.其中OA段为直线,AB段是与OA相切于A点的曲线,BC是平滑的曲线,则关于A、B、C三点对应的x坐标及加速度大小,以下关系式正确的是( )
A.xA=h,aA=g B.xB=h+,aB=0
C.xC=h+,aC=g D.xC>h+,aC>g
12.下图是汽车运送圆柱形工件的示意图.图中P、Q、N是固定在车体上的压力传感器,假设圆柱形工件表面光滑,当汽车静止时,Q传感器示数为零,P、N传感器示数不为零.在汽车向左匀加速启动过程中,P传感器示数为零而Q、N传感器示数不为零.已知sin15°=0.26,cos15°=0.97,tan15°=0.27,g取10 m/s2,则汽车向左匀加速启动的加速度可能为( )
A.4 m/s2 B.3 m/s2
C.2 m/s2 D.1 m/s2
13.避险车道(标志如图甲所示)是避免恶性交通事故的重要设施,由制动坡床和防撞设施等组成,如图乙所示的竖直平面内,制动坡床视为与水平面夹角为θ的斜面.一辆长12 m的载有货物的货车因刹车失灵从干道驶入制动坡床,当车速为23 m/s时,车尾位于制动坡床的底端,货物开始在车厢内向车头滑动,当货物在车厢内滑动了4 m时,车头距制动坡床顶端38 m,再过一段时间,货车停止.已知货车质量是货物质量的4倍,货物与车厢间的动摩擦因数为0.4;货车在制动坡床上运动受到的坡床阻力大小为货车和货物总重的0.44倍.货物与货车分别视为小滑块和平板,取cos θ=1,sin θ=0.1,g =10 m/s2.求:
(1)货物在车厢内滑动时加速度的大小和方向;
(2)制动坡床的长度.
14.如图甲所示,质量m=1 kg的物块在平行斜面向上的拉力F作用下从静止开始沿斜面向上运动,t=0.5 s时撤去拉力,利用速度传感器得到其速度随时间的变化关系图象(v t图象)如图乙所示,g取10 m/s2,求:
甲 乙
(1)2 s内物块的位移大小x和通过的路程L;
(2)沿斜面向上运动的两个阶段加速度大小a1、a2和拉力大小F.
15.如图所示,一辆汽车在平直公路上匀加速行驶,前挡风玻璃上距下沿s处有一片质量为m的树叶相对于玻璃不动,挡风玻璃可视为倾角θ=45°的斜面.当车速达到v0时,树叶刚要向上滑动,汽车立即改做匀速直线运动,树叶开始下滑,经过时间t滑到玻璃的下沿.树叶在运动中受到空气阻力,其大小F=kv(v为车速,k为常数),方向与车运动方向相反.若最大静摩擦力近似等于滑动摩擦力,重力加速度为g,求:
(1)树叶在玻璃表面运动的加速度大小a′;
(2)树叶与玻璃表面之间的动摩擦因数μ;
(3)汽车在匀加速运动阶段的加速度大小a.
参考答案
1.答案B
解析 老鹰沿虚线由M到N做减速运动,合外力与初速度的方向相反,由受力分析可知,空气的阻力与重力的合力方向与MN反向,因此空气对老鹰的作用力可能是题图中的F2,B正确.
2.答案 B
解析 若小车向右加速度增大,弹簧长度不变,则车左壁受物块的压力F1增大,车右壁受弹簧的压力F2的大小不变,B正确。
3.答案 C
解析 对球B受力分析,受重力、BC绳子的拉力FT2、AB绳子的拉力FT1,如图所示,根据牛顿第二定律,水平方向:FT2-FT1sinθ=ma
竖直方向:FT1cosθ-mg=0
解得FT1=,AB绳子的拉力不变
FT2=mgtanθ+ma
匀速时加速度为零,刹车后,加速度向左,取负值,所以,BC绳子的拉力变小,故C正确,A、B、D错误。
4.答案C 解析 令物体B的质量为m,剪断轻绳前,弹簧弹力大小为F,绳子拉力大小为T,将A、B及弹簧看作整体,则有T=3ma;隔离物体A为研究对象,则有F=2ma.剪断轻绳后,绳中拉力消失,弹簧弹力不变,所以物体A受力不变,加速度大小仍为a,而物体B所受合力为F=maB,即aB=2a.
5.答案A 解析 小物块相对斜面静止,因此小物块与斜面间的摩擦力是静摩擦力.缆车以加速度a上行,小物块的加速度也为a,以物块为研究对象,则有Ff-mgsin 30°=ma,Ff=mg+ma,方向平行斜面向上,故A正确,B、C、D均错误.
6.答案B
解析 以两小球和弹簧组成的系统为研究对象受力分析,受到重力2mg和两根绳的拉力各为F,根据平衡条件得2Fsin α=2mg,F=2mg,A错误;隔离a小球分析,得弹簧弹力大小Fx==mg,B正确;由于两端约束的弹簧上的弹力不能瞬间变化,故剪断左侧细线瞬间,b球受力不变,合力为零,其加速度为零,C错误;a球受重力和弹簧的弹力,加速度大小a==2g,D错误.
7.答案CD
解析 初始系统处于静止状态,把BC看成整体,BC受重力2mg、斜面的支持力FN、细线的拉力FT,由平衡条件可得FT=2mgsin θ,对A进行受力分析,A受重力mg、斜面的支持力、弹簧的拉力F弹和细线的拉力FT,由平衡条件可得:F弹=FT+mgsin θ=3mgsin θ,细线被烧断的瞬间,拉力会突变为零,弹簧的弹力不变,根据牛顿第二定律得A球的加速度沿斜面向上,大小a=2gsin θ,选项A错误;细线被烧断的瞬间,把BC看成整体,根据牛顿第二定律得BC球的加速度a′=gsin θ,均沿斜面向下,选项B错误,C正确;对C进行受力分析,C受重力mg、枰的弹力F和斜面的支持力,根据牛顿第二定律得mgsin θ+F=ma′,解得F=0,所以B、C之间杆的弹力大小为0,选项D正确.
8.答案AD
解析 若手指支撑着盘,使盘保持静止状态,则盘受力平衡,手指对盘的作用力与盘的重力等大反向,则手指对盘的作用力等于mg,选项A正确;若手指支撑着盘并一起水平向右匀速运动,则水平方向盘不受力,即盘不受静摩擦力,选项B错误;若手指支撑着盘并一起水平向右匀加速运动,则手指对盘的作用力为静摩擦力,大小不一定等于μmg,选项C错误;若盘随手指一起水平匀加速运动,则手指对盘子水平方向的最大静摩擦力为μmg,竖直方向对盘子的支持力为mg,则手指对盘的作用力大小的最大值=mg,即手指对盘的作用力大小不可超过mg,选项D正确.
9.答案AB
解析 物块在重力、拉力F和弹簧的弹力作用下处于静止状态,由平衡条件得F弹=Fcos θ,mg=Fsin θ,联立解得弹簧的弹力F弹==20 N,选项A正确;撤去拉力F的瞬间,由牛顿第二定律得F弹-μmg=ma1,解得a1=8 m/s2,方向向左,选项B正确;剪断弹簧右端的瞬间,物块受到的弹力消失,则Fcos θ=ma2,解得a2=10 m/s2,方向向右,选项C、D错误.
10.答案 BD解析 设滑块上滑时的加速度大小为a1,由牛顿第二定律可得mgsin θ+μmgcos θ=ma1,解得a1=10 m/s2,上滑时间t1==1 s,上滑的距离x1=v0t1=5 m,因tan θ>μ,mgsin θ>μmgcos θ,滑块上滑到速度为零后,向下运动,选项B正确;设滑块下滑时的加速度大小为a2,由牛顿第二定律可得mgsin θ-μmgcos θ=ma2,解得a2=2 m/s2,经1 s,滑块下滑的距离x2=a2t=1 m<5 m,滑块未回到出发点,选项C错误;因上滑和下滑过程中的加速度不同,故滑块全程不是匀变速直线运动,选项A错误;t=3 s时,滑块沿斜面向下运动,此时的速度v=a2(3 s-1 s)=4 m/s,选项D正确。
11.答案ABD
解析小球在OA段下落时做自由落体运动,A点x坐标就是h,下落h时,小球的加速度为g,所以A正确.B点是速度最大的位置,此时重力和弹力相等,合力为零,加速度也为零,由mg=kx,可知x=,所以B点的x坐标为h+,所以B正确.取一个与A点对称的点为D,由A点到B点,弹簧的形变量为,由对称性得由B点到D点弹簧的形变量也为,故C点的x坐标要大于h+2,加速度aC>g,所以C错误,D正确.
12.答案AB
解析 在汽车向左匀加速启动过程中,P传感器示数为零而Q、N传感器示数不为零,则小球受重力mg、压力传感器N的弹力FN作用和压力传感器Q向下的弹力FQ作用,沿水平、竖直方向正交分解,根据牛顿第二定律得,FQ+mg=FNcos15°,F合=FNsin15°=ma,解得a=tan15°=×0.27 m/s2+2.7 m/s2>2.7 m/s2,选项A、B正确.
13.答案(1)5 m/s2 方向沿制动坡床向下 (2)98 m
解析(1)设货物的质量为m,货物与车厢间的动摩擦因数μ=0.4,货物在车厢内滑动过程中,受到的摩擦力大小为Ff,加速度大小为a1,则
Ff+mgsin θ=ma1①
Ff=μmgcos θ②
联立①②式并代入数据得a1=5 m/s2③
a1的方向沿制动坡床向下
(2)设货车的质量为M,车尾位于制动坡床底端时的车速为v=23 m/s.货物在车厢内开始滑动到车头距制动坡床顶端s0=38 m的过程中,用时为t,货物相对制动坡床的运动距离为s1,在车厢内滑动的距离s=4 m,货车的加速度大小为a2,货车相对制动坡床的运动距离为s2.货车受到制动坡床的阻力大小为F,F是货车和货物总重的k倍,k=0.44,货车长度l0=12 m,制动坡床的长度为l,则
Mgsin θ+F-Ff=Ma2④
F=k(m+M)g⑤
s1=vt-a1t2⑥
s2=vt-a2t2⑦
s=s1-s2⑧
l=l0+s0+s2⑨
联立①②④~⑨并代入数据得l=98 m⑩
14.答案 (1)0.5 m 1.5 m (2)4 m/s2 4 m/s2 8 N
解析 (1)物块上升的位移:x1=×2×1 m=1 m;
物块下滑的距离:x2=×1×1 m=0.5 m;
位移x=x1-x2=1 m-0.5 m=0.5 m
路程L=x1+x2=1 m+0.5 m=1.5 m.
(2)由题图乙知,各阶段加速度的大小
a1= m/s2=4 m/s2
a2= m/s2=-4 m/s2
设斜面倾角为θ,斜面对物块的摩擦力为Ff,根据牛顿第二定律
0~0.5 s内F-Ff-mgsin θ=ma1;
0.5~1 s内-Ff-mgsin θ=ma2;
联立解得:F=8 N.
15.答案 (1) (2) (3)g-
解析 (1)根据匀加速直线运动规律,有
s=a′t2
得a′=.
(2)设汽车匀速运动时,树叶受到挡风玻璃的支持力为N,树叶受到的空气阻力为F,树叶受到的滑动摩擦力为f
F=kv0
f=μN
N=mgcos θ+Fsin θ
由牛顿第二定律,有
mgsin θ-f-Fcos θ=ma′
由题意,θ=45°
联立解得μ=.
(3)设汽车匀加速运动时,树叶受到挡风玻璃的支持力为N′,树叶受到的空气阻力为F′,树叶受到的最大静摩擦力为f′
f′=μN′
F′=kv0
由牛顿第二定律有
N′sin θ+f′cos θ-F′=ma
N′cos θ=f′sin θ+mg
由题意,θ=45°
联立并代入μ,得
a=g-.