(共20张PPT)
BS九(上)
教学课件
第一章 特殊平行四边形
1.3 正方形的性质与判定
第2课时 正方形的判定
1.掌握正方形的判定方法.(重点)
2.会运用正方形的判定条件进行有关的论证和计算 .(难点)
学习目标
问题1:什么是正方形?正方形有哪些性质?
A
B
C
D
正方形:有一组邻边相等,并且有一个角是直角的平行四边形.
正方形性质:①四个角都是直角;
②四条边都相等;
③对角线相等且互相垂直平分.
O
问题2:你是如何判断是矩形、菱形?
平行四边形
矩形
菱形
四边形
三个角是直角
四条边相等
定义
三个判定定理
定义
对角线相等
定义
对角线垂直
正方形判定的定理
作一作:过点A作射线AM的垂线AN,分别在AM , AN上取点B , D ,使AB=AD ,作DC∥AB , BC∥AD ,得四边形ABCD.
A
M
N
B
D
C
问题1:上面所画四边形ABCD是正方形吗?为什么?
1
想一想:将矩形纸片对折两次,怎样裁剪才能使剪下的三角形
展开后是个正方形?
(1)
(2)
(3)
(4)
菱形
问题2:满足怎样条件的矩形是正方形?
矩形
正方形
一组邻边相等
对角线互相垂直
问题3:满足怎样条件的菱形是正方形?
正方形
一个角是直角
对角线相等
1.对角线相等的菱形是正方形.
2.对角线垂直的矩形是正方形.
3.有一个角是直角的菱形是正方形.
正方形判定的两条途径:
正方形
正方形
+
+
先判定菱形
先判定矩形
矩形条件
菱形条件
(1)
(2)
一个直角
对角线相等
一组邻边相等
对角线垂直
定理:
如图,在矩形ABCD中, BE平分∠ABC , CE平分∠DCB , BF∥CE , CF∥BE.
求证:四边形BECF是正方形.
F
A
B
E
C
D
解析:先由两组平行线得出四边形BECF平行四边形;再由一个直角,得出是矩形;最后由一组邻边相等可得正方形.
45°
45°
正方形判定定理的应用
2
例1
F
A
B
E
C
D
证明: ∵ BF∥CE,CF∥BE,
∴四边形BECF是平行四边形.
∵四边形ABCD是矩形,
∴ ∠ABC = 90°, ∠DCB = 90°,
∵BE平分∠ABC, CE平分∠ DCB,
∴∠EBC = 45°, ∠ECB = 45°,
∴ ∠ EBC =∠ ECB .
∴ EB=EC,∴□ BECF是菱形 .
在△EBC中,
∵ ∠EBC = 45°,∠ECB = 45°,
∴∠BEC = 90°,
∴菱形BECF是正方形.
已知:如图所示,在Rt△ABC中, ∠C=90° , ∠BAC , ∠ABC的平分线于点D , DE⊥BC于点E , DF⊥AC于点F.
求证:四边形CEDF是正方形.
证明: 如图所示,过点D作DG⊥AB于点G.
∵DF⊥AC , DE⊥BC ,
∴∠DFC=∠DEC=90°.
又∠C=90°,
∴四边形CEDF是矩形 (有三个角是直角的四边形是矩形).
∵ AD平分∠BAC , DF⊥AC , DG⊥AB.
∴DF=DG. 同理可得 DE=DG , ∴DE=DF.
∴四边形CEDF是正方形(有一组邻边相等的矩形是正方形).
C
E
B
A
F
D
G
例2
如图,EG,FH过正方形ABCD的对角线的交点O,且EG⊥FH. 求证:四边形EFGH是正方形.
证明:∵四边形ABCD为正方形,
∴OB=OC,∠ABO=∠BCO =45°,
∠BOC=90°=∠COH+∠BOH.
∵EG⊥FH,
∴∠BOE+∠BOH=90°,
∴∠COH=∠BOE,
∴△CHO ≌△BEO,∴OE=OH.
同理可证:OE=OF=OG,
B
A
C
D
O
E
H
G
F
例3
∴OE=OF=OG=OH.
又∵EG⊥FH,
∴四边形EFGH为菱形.
∵EO+GO=FO+HO ,即EG=HF,
∴四边形EFGH为正方形.
B
A
C
D
O
E
H
G
F
做一做:顺次连接任意四边形各边中点所得的四边形是平行四边形.顺次连接矩形、正方形各边中点能得到怎样的特殊平行四边形?
A
B
C
D
A
B
C
D
A
B
C
D
矩形
正方形
任意四边形
平行四边形
菱形
正方形
E
F
G
H
E
F
G
H
E
F
G
H
中点四边形
3
常见中点四边形比较
1.下列命题正确的是( )
A.四个角都相等的四边形是正方形
B.四条边都相等的四边形是正方形
C.对角线相等的平行四边形是正方形
D.对角线互相垂直的矩形是正方形
2.四个内角都相等的四边形一定是( )
A.正方形 B.菱形 C.矩形 D.平行四边形
D
C
3.如图,在四边形ABCD中, AB=BC ,对角线BD平分 ABC , P是BD上一点,过点P作PM AD , PN CD ,垂足分别为M、N.
(1) 求证: ADB= CDB;
(2) 若 ADC=90 ,求证:四边形MPND是正方形.
C
A
B
D
P
M
N
证明:(1)∵AB = BC,BD平分∠ABC.
∴∠1=∠2.
∴△ABD≌△CBD (AAS).
∴∠ADB=∠CDB.
1
2
C
A
B
D
P
M
N
(2)∵∠ADC=90°;
又∵PM⊥AD,PN⊥CD;
∴∠PMD=∠PND=90°.
∴四边形NPMD是矩形.
∵∠ADB=∠CDB;
∴∠ADB=∠CDB=45°.
∴∠MPD=∠NPD=45°.
∴DM=PM,DN=PN.
∴四边形NPMD是正方形.
有一个角是90°
(或对角线互相垂直)
有一对邻边相等
(或对角线相等)
平行四边形
矩形
菱形
正方形
一组邻边相等且一个内角为直角
(或对角线互相垂直平分且相等)
有一个角是90°
(或对角线互相垂直)
有一对邻边相等
(或对角线相等)