1.4势能及其改变 课时训练(word解析版)

文档属性

名称 1.4势能及其改变 课时训练(word解析版)
格式 doc
文件大小 477.0KB
资源类型 教案
版本资源 鲁科版(2019)
科目 物理
更新时间 2021-10-13 06:24:58

图片预览

文档简介

2021-2022学年鲁科版(2019)必修第二册
1.4势能及其改变 课时训练(解析版)
1.物体在地面附近匀速上升,则在上升过程中,物体机械能的变化是(  )
A.不变 B.减小 C.增大 D.无法判断
2.下列关于重力势能的说法中正确的是(  )
A.重力势能Ep1=2J,Ep2=-3J,则Ep1与Ep2方向相反
B.同一物体重力势能Ep1=2J,Ep2=-3J,则Ep1>Ep2
C.在同一高度的质量不同的两个物体,它们的重力势能一定不同
D.重力势能是标量,负值没有意义
3.质量为m的皮球,与地面碰撞机械能总是损失20%,现将该球从高为h处竖直向下抛出,要使它反弹到h高处,不计空气阻力,则人至少应对皮球做功( )
A.mgh B.mgh C.mgh D.mgh
4.关于动能的理解,下列说法正确的是(  )
A.凡是运动的物体都具有动能
B.重力势能可以为负值,动能也可以为负值
C.一定质量的物体,动能变化时,速度一定变化,速度变化时,动能也一定变化
D.动能不变的物体,一定处于平衡状态
5.如图所示,一条均匀链条的两端悬挂在等高的两点静止。若用力作用在链条的中点处缓慢竖直向上或者竖直向下拉动一小段距离的过程中,链条的(  )
A.机械能均保持不变 B.重力势能均保持不变
C.重力势能均减小 D.重力势能均增大
6.弹簧发生弹性形变时产生了弹力,具有了弹性势能。弹簧的弹力可对外做正功,也可对外做负功,弹簧的弹力做功,弹簧的弹性势能变化;弹簧的弹性势能变化,弹簧的弹力必做功。下列关于弹簧弹力的功、弹簧弹性势能及其变化的下列说法正确的是(  )
A.弹簧的弹力做正功时,弹簧的弹性势能增加
B.弹簧的弹力做负功时,弹簧的弹性势能减少
C.弹簧的弹力做功为零的过程中,弹簧的弹性势能一定保持不变
D.同一弹簧的伸长量与压缩量相等时,弹簧的弹性势能也相等
7.如图所示,桌面离地高度为h,质量为m的小球,从离桌面H高处由静止下落。若以桌面为参考平面,则小球落地时的重力势能及整个过程中小球重力做功分别为(  )
A.mgh,mg(H-h)
B.-mgh,mg(H+h)
C.-mgh,mg(H-h)
D.-mg(H+h),mg(H+h)
8.把质量为m的小球放在竖直的弹簧上,并把小球往下按至A点的位置,如图甲所示,迅速松手后,弹簧把小球弹起,小球升至最高位置C如图乙所示,途中经过位置B时弹簧正好处于自由状态。弹簧的质量和空气阻力均可忽略。小球由位置A运动至位置B的过程中,弹簧的弹性势能变化情况是(  )
A.一直减小 B.一直增大 C.先增大后减小 D.先减小后增大
9.自然现象中蕴藏着许多物理知识,如图所示为一个盛水袋,某人从侧面缓慢推袋壁使袋由图中虚线位置变形至图中实线位置,下列说法正确的是(  )
A.水的重力势能始终为正值
B.水的重力势能始终为负值
C.水的重力势能不变
D.水的重力势能增大
10.2019年7月23日12时41分,中国的“天问一号”火星探测器成功发射,开启了中国火星探测之旅。探测器在进入火星轨道时的轨迹变化如图所示,探测器先在圆轨道Ⅰ上运动,经过P点时启动变轨发动机切换到椭圆轨道Ⅱ上运动,下列关于探测器运动的说法正确的是(  )
A.在轨道Ⅰ上P点的速度大于轨道Ⅱ上P点的速度
B.在轨道Ⅰ上P点的加速度大于轨道Ⅱ上P点的加速度
C.在轨道Ⅰ上运动的周期小于轨道Ⅱ上运动的周期
D.在轨道Ⅰ上的机械能小于轨道Ⅱ上的机械能
11.如图甲所示,一个小球悬挂在细绳下端,由静止开始沿竖直方向运动,运动过程中小球的机械能E与路程x的关系图像如图乙所示,其中过程的图像为曲线,过程的图像为直线。忽略空气阻力。下列说法正确的是(  )
A.过程中小球所受拉力总是大于重力
B.小球运动路程为x1时的动能为最大
C.过程中小球的重力势能一直增大
D.过程中小球一定做匀加速直线运动
12.质量为m的某同学在背越式跳高过程中,恰好越过高度为h的横杆,不计空气阻力,重力加速度为g。则(  )
A.起跳阶段,地面对人的弹力不做功
B.上升过程中,重力势能增加mgh
C.从起跳最低点到上升最高点过程先超重后失重
D.刚接触海绵垫时,在竖直方向即做减速运动
13.如图甲所示,斜面固定在水平地面上,一木块沿斜面由静止开始下滑,下滑过程中木块的机械能和动能随位移变化的关系图线如图乙所示,设水平地面为零势能面,则下列说法正确的是(  )
A.位移为x时,木块刚好滑到斜面的底端
B.在位移从0到x的过程中,木块的重力势能减少了2E
C.图线a斜率的绝对值表示木块所受的重力大小
D.图线b斜率的绝对值表示木块所受的合力大小
14.如图所示,在竖直面内固定有半径为R的四分之一光滑圆弧轨道ABC,半径OB与竖直半径OA的夹角为53°,质量为m的小球(视为质点)静止在A处。若对小球施加方向水平向右、大小为F(F未知)的恒定推力则小球沿轨道恰好能上滑到最高点B。现使该小球在方向水平向右、大小为3F的恒定推力作用下,仍从A处由静止沿轨道上滑。重力加速度大小为g,不计空气阻力,取sin53°=0.8,cos53°=0.6.下列说法正确的是(  )
A.
B.小球到达B处时的速度大小为
C.小球轨迹的最高点到C点的高度为R
D.小球从A处开始到其轨迹的最高点,机械能的增量为
15.某同学看到法治节目中报道有人用弹弓射击野生动物,他对此行为表示强烈谴责,为了教育其他同学不要玩弹弓,他想用学过的物理知识来实际测量它的威力。于是他准备了一个与节目中类似的弹弓,如图所示,弹弓两侧的支架各固定有两根完全相同的橡胶管。金属弹珠的直径为10mm。
(1)他首先猜想橡胶管拉伸过程中弹力与形变量的关系满足胡克定律,为了验证猜想进行了实验。由于实验室的传感器量程较小,于是他取其中一根橡胶管进行实验,通过传感器拉动橡胶管,记下它每一次的长度L及对应的拉力F的大小,并在坐标纸上画出图甲所示的图象。为了便于研究,他在老师的启发下将原图象拟合成图乙所示,请你根据图乙,计算出该单根橡胶管的原长L0和劲度系数k;
(2)该同学查阅资料发现,当弹丸发射后的比动能(动能与最大横截面积的比值)超过1.8J/cm2时,就可被认定为被管制危险品,并且满足胡克定律的物体在弹性限度内其弹性势能E与形变量x的关系式可表示为E,在一次测试中,弹弓两侧的橡胶管组被拉至49cm长,请你估算弹珠离开弹弓时的比动能(π取3,结果保留两位有效数字);
(3)该同学在实际测量弹珠射程时发现,当用比较大的弹珠时,它的射程比较小,请你用学过的物理知识解释这一现象。
16.如图所示,长为l=1 m、质量为M=1 kg的长木板放在光滑的平台上,质量为m=0.5 kg的物块放在长木板上表面的左端,在平台右侧边缘固定一定滑轮,绕过定滑轮的细线一端系在物块上,连接物块的细线保持水平,用大小为F=1.2 N的拉力向下拉细线,使物块向右做加速运动,已知物块与长木板间的动摩擦因数为0. 2,且最大静摩擦力等于滑动摩擦力,重力加速度g取10 m/s2,长木板右端离定滑轮距离足够大,平台离地面足够高,求:
(1)在拉力F作用下,物块与长木板之间的摩擦力大小;
(2)若不用拉力,而在细线上悬挂一个重为G=5 N的重物,释放重物,则物块滑离长木板时,长木板运动的距离为多少
(3)若(2)问中物块运动到长木板正中间时,细线断开,试判断此后物块能否滑离长木板
参考答案
1.C
【详解】
物体在地面附近匀速上升,动能不变;上升过程,高度增加,重力势能增大;而机械能是物体动能和势能的综合,故物体在地面附近匀速上升,在上升过程中,物体机械能增大。
故选C。
2.B
【详解】
AB.重力势能是标量,正负表示大小,不表示方向,重力势能Ep1=2J,Ep2=-3J,则Ep1大于Ep2,故A错误,B正确;
C.重力势能是一个相对量,是相对于参考平面来说的,在同一高度的质量不同的两个物体,如果选取该高度为参考平面,则它们的重力势能都为零,故C错误;
D.重力势能是标量,负值表示物体处于参考平面以下,有意义,故D错误。
故选B。
3.A
【详解】
根据题意和功能关系有
(1 - 20%)(mgh + W) = mgh
解得要使它反弹到h高度,人至少应对皮球做的功为
W =
故选A。
4.A
【详解】
A.凡是运动的物体都具有动能。A正确;
B.重力势能可以为负值,动能不可以为负值。B错误;
C.一定质量的物体,动能变化时,速度一定变化,速度变化时,如果只是方向变化,则动能不变。C错误;
D.动能不变的物体,可能速度大小不变而方向变化,则物体不是处于平衡状态。D错误。
故选A。
5.D
【详解】
A.将链条的中点缓慢竖直向上或者竖直向下拉动一小段距离的过程中,由于有外力对链条做正功,所以机械能均增大,故A错误。
BCD.由于链条缓慢变化,所以动能不变,机械能增大,所以重力势能也增大,故BC错误,D正确。
故选D。
6.D
【详解】
AB.弹簧的弹力做正功时,弹性势能转化为其他形式的能量,弹簧的弹性势能减少,弹簧的弹力做负功时,其他形式的能量转化为弹性势能,弹簧的弹性势能增加,AB错误;
C.弹簧的弹力做功为零,表示弹簧的初末状态弹性势能相等,但弹性势能不一定总保持不变,C错误;
D.弹性势能与形变量有关,同一弹簧的伸长量与压缩量相等时,弹簧的弹性势能也相等,D正确。
故选D。
7.B
【详解】
若以桌面为参考平面,小球落地时的重力势能
Ep= mgh
在整个运动中,小球重力做功为
W=mg(H+h)
ACD错误,B正确。
故选B。
8.A
【详解】
小球从A上升到B位置的过程中,弹簧的形变量一直减小,根据可知,弹簧的弹性势能一直减小。
故选A。
9.D
【详解】
AB.重力势能的大小与零势面的选取有关,故无法判断重力势能是大于零还是小于零,故AB错;
CD.人对袋有推力且在力的方向上有位移,故人对水袋做功,水的动能不变,使水的势能增加,故D正确,C错误。
故选D。
10.A
【详解】
A.探测器进入轨道Ⅱ时做向心运动,可知提供的向心力要大于在轨道Ⅰ上运动的向心力,所以探测器在P点需要减速进入轨道Ⅱ,故在轨道Ⅰ上P点的速度大于轨道Ⅱ上P点的速度,故A正确;
B.根据万有引力提供加速度可知,则同一位置,加速度相同,故B错误;
C.根据开普勒第三定律可知,圆轨道的半径大椭圆轨道的半长轴,故在轨道Ⅰ上运动的周期大于轨道Ⅱ上运动的周期,故C错误;
D.选项A分析中可知,由圆轨道点火减速变轨到低轨道的椭圆轨道,阻力做负功,机械能损失,则在轨道Ⅰ上的机械能大于轨道Ⅱ上的机械能,故D错误。
故选A。
11.D
【详解】
AB.运动中只受重力和拉力,由于除重力之外的其它力做功等于小球机械能的变化,即
可得图象的斜率的绝对值等于小球所受拉力的大小,如图可知过程机械能增加,绳子拉力做正功,小球向上运动,过程机械能减小,绳子拉力做负功,小球向下运动,所以在位置处速度为零,动能为零,说明过程小球速度先加速后减速,在减速阶段拉力小于重力。故AB错误;
C. 过程中小球先向上运动后向下运动,即重力势能先增加后减小,故C错误;
D.由于小球在过程图象的斜率的绝对值不变,故小球所受的拉力保持不变,又由于在位置处速度为零,小球又向下运动,在过程小球一定做匀加速直线运动,故D正确。
故选D。
12.AC
【详解】
A.该同学起跳脚蹬地的过程中,地面对人的弹力方向上没位移,所以弹力不做功,A正确;
B.上升过程中,人的重心上升的高度小于h,则重力势能增加量小于mgh,B错误;
C.从起跳最低点到上升最高点过程该同学先加速运动离地后做减速运动,即加速度先向上然后向下,则先超重后失重,C正确;
D.刚接触海绵垫时,重力大于海面的弹力,先做加速运动,当重力小于海面的弹力后做减速运动,D错误。
故选AC。
13.AD
【详解】
A.木块沿斜面由静止下滑的过程,动能增加,机械能减少,位移为x时,木块的动能等于机械能,说明木块的重力势能为零,因为设水平地面为零势能面,所以位移为x时,木块刚好滑到斜面的底端,A正确;
B.在位移从0到x的过程中,根据图像可知,木块的动能Ek从0增加到2E,即动能增加了2E,机械能E机从3E减小到2E,即机械能减少了E,又因为机械能等于动能和重力势能之和,即
可知木块的重力势能减少了3E,B错误;
C.图线a反映木块的机械能随位移变化的关系,由于木块的机械能减少,所以木块在下滑过程中必定受到滑动摩擦力,设滑动摩擦力大小为f。根据功能关系得

则知图线a斜率的绝对值表示木块所受的滑动摩擦力大小,C错误;
D.图线b反映木块的动能随位移变化的关系,根据动能定理得

则知图线b斜率的绝对值表示木块所受的合力大小,D正确。
故选AD。
14.BD
【详解】
A.当施加力F时,由动能定理
解得
选项A错误;
B.当加大小为3F的恒定推力作用时,由动能定理
解得
选项B正确;
CD.小球能达到圆弧最高点C时,由动能定理
解得
小球从C点竖直向上飞出,水平方向在力3F的作用下做匀加速运动,竖直方向做加速度为g的减速运动,到达最高点时距离C点的竖直高度
距离C点的水平位移
小球从A处开始到其轨迹的最高点,机械能的增量等于恒力3F做的功,则为
选项C错误,D正确。
故选BD。
15.(1) 34cm和0.7N/cm;(2)4.2J/cm2;(3)发射过程橡胶管的弹性势能完全转化为弹丸的动能,由于橡胶管的弹性势是一定的,当用质量比较大的弹珠发射时,弹珠离开弹弓的初速度减小,弹丸飞行过程可以近似为平抛运动或匀变速直线运动,初速度小则射程小。
【详解】
(1)由图线可知
k0.7N/cm
设橡胶管的原长为L0,当L=40cm时,
F=k(L﹣L0)
L0=34cm
(2)当弹弓拉到49cm时,由机械能守恒弹丸发射后的动能为
Ek=4kx2=40.7×100×(49×10﹣2﹣34×10﹣2)2J=3.15J
弹珠离开弹弓时的比动能为
(3)发射过程橡胶管的弹性势能完全转化为弹丸的动能,由于橡胶管的弹性势是一定的,当用质量比较大的弹珠发射时,弹珠离开弹弓的初速度减小,弹丸飞行过程可以近似为平抛运动或匀变速直线运动,初速度小则射程小。
16.(1)0.8N;(2);(3)刚好不滑离长木板
【详解】
(1)假设在拉力作用F两物体间保持相对静止,两物体共同的加速度为
对长木板
f=Ma=0.8N
而两物体间的最大静摩擦力为
可见f即物体与长木板之间的摩擦力大小为0.8N
(2)释放悬挂重物后,设物块的加速度为al,根据牛顿第二定律有
解得
长木板运动的加速度为
设物块滑离的时间为t1,根据运动学公式有
解得
此过程长木板运动的位移
(3)在(2)中当物块运动到长木板正中间时,设物块运动的时间为t2,根据运动学公式有
解得
此时物块的速度
长木板的速度
此时细线断开.设此后物块不会滑离长木板,物块与长木板的共同速度为v,根据动量守恒定律有
解得
设此后物块在长木板上滑行的距离为x,根据功能关系有
解得
x=0.5m
即物块刚好不滑离长木板.