中小学教育资源及组卷应用平台
课时25.3 用频率估计概率
利用频率估计概率:实际上,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.用频率估计概率 ,虽然不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得可求概率的随机事件的范围扩大.
( http: / / www.21cnjy.com )
典例1.(2020·天津红桥区·九年级期末)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )
A.12个 B.16个 C.20个 D.30个
【答案】A
【详解】
∵共摸了40次,其中10次摸到黑球,∴有30次摸到白球.
∴摸到黑球与摸到白球的次数之比为1:3.∴口袋中黑球和白球个数之比为1:3.
∴4×3=12(个).故选A.
变式1-1.(2020·河南南阳市·九年级期末)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )
A. B. C. D.
【答案】D
【提示】
随机事件A的概率事件A可能出现的结果数÷所有可能出现的结果数.
【详解】
解:每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,
当小明到达该路口时,遇到绿灯的概率,
故选D.
【名师点拨】
本题考查了概率,熟练掌握概率公式是解题的关键.
变式1-2.(2020·温州市九年级期末)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )2·1·c·n·j·y
A.20 B.24 C.28 D.30
【答案】D
【详解】
试题解析:根据题意得=30%,解得n=30,
所以这个不透明的盒子里大约有30个除颜色外其他完全相同的小球.
故选D.
变式1-3.(2020·山西九年级期末)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )
( http: / / www.21cnjy.com )
A. B. C. D.
【答案】B
【提示】
本题分两部分求解,首先假设不规则图案面积为x,根据几何概率知识求解不规则图案占长方形的面积大小;继而根据折线图用频率估计概率,综合以上列方程求解.
【详解】
假设不规则图案面积为x,
由已知得:长方形面积为20,
根据几何概率公式小球落在不规则图案的概率为: ,
当事件A实验次数足够多,即样本足够大时,其频率可作为事件A发生的概率估计值,故由折线图可知,小球落在不规则图案的概率大约为0.35,21*cnjy*com
综上有:,解得.
故选:B.
【名师点拨】
本题考查几何概率以及用频率估计概率,并在此基础上进行了题目创新,解题关键在于清晰理解题意,能从复杂的题目背景当中找到考点化繁为简,创新题目对基础知识要求极高.
变式1-4.(2020·山东淄博市·九年级期末)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:21*cnjy*com
抛掷次数 100 200 300 400 500
正面朝上的频数 53 98 156 202 244
若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( )
A.20 B.300 C.500 D.800
【答案】C
【提示】
随着实验次数的增加,正面向上的频率逐渐稳定到某个常数附近,据此求解即可.
【详解】
观察表格发现:随着实验次数的增加,正面朝上的频率逐渐稳定到0.5附近,
所以抛掷硬币的次数为1000,则“正面朝上”的频数最接近次,故选C.
【名师点拨】
本题考查利用频率估计概率的知识,解题的关键是了解在大量重复试验中,可以用频率估计概率.
变式1-5.(2020·山西吕梁市期末)在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是( )
A.12 B.9 C.4 D.3
【答案】A
【提示】
摸到红球的频率稳定在25%,即=25%,即可即解得a的值
【详解】
解:∵摸到红球的频率稳定在25%,∴=25%,解得:a=12.
故本题选A.
【名师点拨】
本题考查用频率估计概率,熟记公式正确计算是本题的解题关键
典例2.(2020·江苏徐州市·九年级期末)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.www.21-cn-jy.com
(1)填空:样本容量为 ,a= ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
( http: / / www.21cnjy.com )
【答案】(1)故答案为100,30;(2)见解析;(3)0.45.
【提示】
(1)用A组的频数除以它所占的百分比得到样本容量,然后计算B组所占的百分比得到a的值;
(2)利用B组的频数为30补全频数分布直方图;
(3)计算出样本中身高低于160cm的频率,然后利用样本估计总体和利用频率估计概率求解.
【详解】
解:(1),
所以样本容量为100;
B组的人数为,
所以,则;
故答案为,;
(2)补全频数分布直方图为:
( http: / / www.21cnjy.com )
(3)样本中身高低于的人数为,
样本中身高低于的频率为,
所以估计从该地随机抽取名学生,估计这名学生身高低于的概率为.
【名师点拨】
本题考查了利用频率估计概率:用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.也考查了统计中的有关概念.【来源:21·世纪·教育·网】
变式2-1.(2020·灵璧县九年级期中)某种油菜籽在相同条件下的发芽实验结果如下表:
每批粒数n 100 150 200 500 800 1 000
发芽的粒数m 65 111 136 345 560 700
发芽的频率 0.65 0.74 0.68 0.69 a b
(1)a= ,b= ;
(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;
(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10 000粒该种油菜籽可得到油菜秧苗多少棵?21·世纪*教育网
【答案】(1)0.70,0.70;(2)0.70,(3)6 300棵
【提示】
(1)用发芽粒数除以每批粒数即可算出a,b的值;
(2)根据在相同条件下,多次实验,某一事件的发生频率近似等于概率即可得出答案;
(3)用种子数乘以发芽率再乘以成秧率即可.
【详解】
(1)a==0.70,
b==0.70;
(2)∵发芽的频率接近0.70,
∴概率估计值为0.70,
理由:在相同条件下,多次实验,某一事件的发生频率近似等于概率;
(3)10000×0.70×90%=6300(棵),
答:在相同条件下用10000粒该种油菜籽可得到油菜秧苗6300棵.
【名师点拨】
本题考查了利用频率估计概率,掌握知识点是解题关键.
变式2-2.(2020·陕西九年级期中)第一个不透明的布袋中装有除颜色外均相同的7个黑球、5个白球和若干个红球每次摇匀后随机摸出一个球,记下颜色后再放回袋中,通过大量重复摸球试验后,发现摸到红球的频率稳定在0.4,估计袋中红球的个数.www-2-1-cnjy-com
【答案】估计袋中红球8个.
【提示】
根据摸到红球的频率,可以得到摸到黑球和白球的概率之和,从而可以求得总的球数,从而可以得到红球的个数.
【详解】
解:由题意可得:摸到黑球和白球的频率之和为:,
总的球数为:,
红球有:(个.
答:估计袋中红球8个.
【名师点拨】
此题主要考查了利用频率估计概率,本题利用了用大量试验得到的频率可以估计事件的概率.关键是根据红球的频率得到相应的等量关系.
变式2-3.(2020·吉林长春市·九年级期末)在硬地上抛掷一枚图钉,通常会出现两种情况:
( http: / / www.21cnjy.com )
下面是小明和同学做“抛掷图钉实验”获得的数据:
抛掷次数n 100 200 300 400 500 600 700 800 900 1000
针尖不着地的频数m 63 120 186 252 310 360 434 488 549 610
针尖不着地的频率 0.63 0.60 0.63 0.60 0.62 0.61 0.61
(1)填写表中的空格;
(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;
( http: / / www.21cnjy.com )
(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为 .
【答案】(1)见表格解析;(2)见解析;(3)0.39.
【提示】
(1)先由频率=频数÷试验次数算出频率;
(2)根据表格作出折线统计图即可;
(3)根据表格观察抛掷的次数增多时,频率稳定到哪个数值,这就是概率.
【详解】
解:(1)
抛掷次数n 100 200 300 400 500 600 700 800 900 1000
针尖不着地的频数m 63 120 186 252 310 360 434 488 549 610
针尖不着地的频率 0.63 0.60 0.62 0.63 0.62 0.60 0.62 0.61 0.61 0.61
(2)
( http: / / www.21cnjy.com )
(3)通过大量试验,发现频率围绕0.39上下波动,于是可以估计概率是1﹣0.61=0.39.
【名师点拨】
考核知识点:用频率表示概率.求出频率是关键.
变式2-4.(2020·滕州市九年级期中)一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
摸球总次数
“和为”出现的频数
“和为”出现的频率
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;21cnjy.com
如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.
【答案】(1);(2)的值可以为其中一个.
【提示】
(1)根据实验次数越大越接近实际概率求出出现“和为8”的概率即可;
(2)根据小球分别标有数字3、4、5、x,用列表法或画树状图法说明当x=7时,得出数字之和为9的概率,即可得出答案.21·cn·jy·com
【详解】
(1)利用图表得出:
突验次数越大越接近实际概率,所以出现和为8的概率是0.33.
(2)当x=7时
则两个小球上数家之和为9的概率是
故x的值不可以取7.
∴出现和为9的概率是三分之一,即有3种可能,
∴3+x=9或4+x=9或5+x=9,
解得:x=6,x=5,x=4,故x的值可以为4,5,6其中一个.
【名师点拨】
本题考查了利用频率估计概率,以及列树状图法求概率,注意甲、乙两人每次同时从袋中各随机摸出1个球,列出图表是解答本题的关键.21世纪教育网版权所有
1.(2021·日照市九年级期末)某射击运动员在同一条件下的射击成绩记录如下:
射击次数 20 80 100 200 400 1000
“射中九环以上”的次数 18 68 82 168 327 823
“射中九环以上”的频率(结果保留两位小数) 0.90 0.85 0.82 0.84 0.82 0.82
根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )
A.0.90 B.0.82 C.0.85 D.0.84
【答案】B
【提示】
根据大量的实验结果稳定在0.82左右即可得出结论.
【详解】
解:∵从频率的波动情况可以发现频率稳定在0.82附近,
∴这名运动员射击一次时“射中九环以上”的概率是0.82.
故选:B.
【名师点拨】
本题主要考查的是利用频率估计概率,熟知大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率是解答此题的关键.21教育网
2.(2021·四川广元市期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数 100 200 300 500 800 1000 2000
频率 0.365 0.328 0.330 0.334 0.336 0.332 0.333
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率
【答案】B
【提示】
根据利用频率估计概率得到实验的概率在0.33左右,再分别计算出四个选项中的概率,然后进行判断.
【详解】
解:A、一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃的概率为,不符合题意;
B、在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”的概率是,符合题意;
C、抛一个质地均匀的正六面体骰子,向上的面点数是5的概率为,不符合题意;
D、抛一枚硬币,出现反面的概率为,不符合题意,
故选B.
【名师点拨】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.当实验的所有可能结果不是有限个或结果个数很多,或各种可能结果发生的可能性不相等时,一般通过统计频率来估计概率.
3.(2021·山东九年级期末)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.2-1-c-n-j-y
身高
人数 60 260 550 130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是( )
A.0.32 B.0.55 C.0.68 D.0.87
【答案】C
【提示】
先计算出样本中身高不低于170cm的频率,然后根据利用频率估计概率求解.
【详解】
解:样本中身高不低于170cm的频率,
所以估计抽查该地区一名九年级男生的身高不低于170cm的概率是0.68.
故选:C.【来源:21cnj*y.co*m】
【名师点拨】
本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.用频率估计概率得到的是近似值,随实验次数的增多,值越来越精确.【出处:21教育名师】
4.(2021·湖北襄阳市·九年级期末)一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )
A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计
【答案】A
【详解】
根据题意可得5位同学摸到红球的频率为,由此可得盒子里的红球比白球多.故选A.
5.(2021·河南三门峡市期末)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
( http: / / www.21cnjy.com )
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是( )
A.① B.② C.①② D.①③
【答案】B
【提示】
随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,据此进行判断即可.
【详解】
解:①当抛掷次数是100时,计算机记录“正面向上”的次数是47,“正面向上”的概率不一定是0.47,故错误;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5,故正确;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率不一定是0.45,故错误.
故选:B.
【名师点拨】
本题考查了利用频率估计概率,明确概率的定义是解题的关键.
6.(2021·辽宁九年级期末)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )
A.20 B.30 C.40 D.50
【答案】A
【详解】
提示:根据白球的频率稳定在0.4附近得到白球的概率约为0.4,根据白球个数确定出总个数,进而确定出黑球个数n.
详解:根据题意得: ,
计算得出:n=20,
故选A.
名师点拨:根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.
7.(2021·湖北随州市·九年级期末)由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )
( http: / / www.21cnjy.com )
A.两个转盘转出蓝色的概率一样大
B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了
C.游戏者配成紫色的概率为
D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同
【答案】C
【提示】
根据古典概率模型的定义和列树状图求概率分别对每个选项逐一判断可得.
【详解】
解:A、A盘转出蓝色的概率为、B盘转出蓝色的概率为,此选项错误;
B、如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性不变,此选项错误;
C、画树状图如下:
( http: / / www.21cnjy.com )
由于共有6种等可能结果,而出现红色和蓝色的只有1种,
所以游戏者配成紫色的概率为,
D、由于A、B两个转盘是相互独立的,先转动A 转盘再转动B 转盘和同时转动两个转盘,游戏者配成紫色的概率相同,此选项错误;
故选:C.
【名师点拨】
此题考查了列表法或树状图法求概率.注意用到的知识点为:概率=所求情况数与总情况数之比.
8.(2021·广东九年级期末)某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有( )
A.380粒 B.400粒 C.420粒 D.500粒
【答案】D
【提示】
用蓝色黄豆的数量除以所抽取样本中蓝色黄豆所占比例即可得.
【详解】
解:估计这袋黄豆约有25÷=500(粒),
故选:D.
【名师点拨】
本题考查了用样本的数据特征来估计总体的数据特征,利用样本中的数据对整体进行估算是统计学中最常用的估算方法.
9.(2021·广东九年级期末)在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则估计盒子中红球的个数大约是
A.20个 B.16个 C.15个 D.12个
【答案】D
【提示】
利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.
【详解】
设红球有x个,根据题意得,
3:(3+x)=1:5,
解得x=12,
经检验:x=12是原分式方程的解,
所以估计盒子中红球的个数大约有12个,
故选D.
【名师点拨】
此题主要考查了利用频率估计概率,正确运用概率公式是解题关键.
10.(2021·南京市九年级期末)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )
A.16 B.20 C.24 D.28
【答案】B
【提示】
在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.
【详解】
根据题意知=20%,
解得a=20,
经检验:a=20是原分式方程的解,
故选B.
【名师点拨】
本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据红球的频率得到相应的等量关系.
11.(2021·河南三门峡市·九年级期末)大数据提示技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________.
( http: / / www.21cnjy.com )
【答案】2.4
【提示】
求出正方形二维码的面积,根据题意得到黑色部分的面积占正方形面积得60%计算即可;
【详解】
∵正方形的二维码的边长为2cm,
∴正方形二维码的面积为,
∵经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,
∴黑色部分的面积占正方形二维码面积得60%,
∴黑色部分的面积约为:,
故答案为.
【名师点拨】
本题主要考查了利用频率估计概率进行求解,准确立即数据的意义是解题的关键.
12.(2021·武汉市九年级期末)在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数 100 1000 5000 10000 50000 100000
摸出黑球次数 46 487 2506 5008 24996 50007
根据列表,可以估计出n的值是 .
【答案】10
【详解】
试题提示:∵通过大量重复试验后发现,摸到黑球的频率稳定于0.5,∴=0.5,解得:n=10.
13.(2021·河南九年级期末)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.
【答案】7.
【提示】
根据口袋中有3个白球和若干个红球,利用红球在总数中所占比例得出与实验比例应该相等求出即可.
【详解】
设袋中红球有x个,
根据题意,得:,
解得:x=7,
经检验:x=7是分式方程的解,
所以袋中红球有7个,
故答案为7.
【名师点拨】
此题考查利用频率估计概率,解题关键在于利用红球在总数中所占比例进行求解.
14.(2021·南昌市九年级期末)技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)
【答案】0.99
【提示】
根据产品合格的频率已达到0.9911,保留两位小数,所以估计合格件数的概率为0.99.
【详解】
解:合格频率为:0.9911,保留两位小数为0.99,则根据产品合频率,估计该产品合格的概率为0.99.
故答案为0.99.
【名师点拨】
本题考查了利用频率估计概率.用到的知识点为:概率=所求情况数与总情况数之比及运用样本数据去估计总体数据的基本解题思想.
15.(2021·广东中山市·九年级期末)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:
移植总数(n) 200 500 800 2000 12000
成活数(m) 187 446 730 1790 10836
成活的频率 0.935 0.892 0.913 0.895 0.903
根据表中数据,估计这种幼树移植成活率的概率为___(精确到0.1).
【答案】0.9
【提示】
由题意根据概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率进行提示即可.21教育名师原创作品
【详解】
解:概率是大量重复实验的情况下,频率的稳定值可以作为概率的估计值,即次数越多的频率越接近于概率,
∴这种幼树移植成活率的概率约为0.9.
故答案为:0.9.
【名师点拨】
本题主要考查利用频率估计概率,大量反复试验下频率稳定值即概率.注意掌握频率=所求情况数与总情况数之比.
16.(2021·浙江嘉兴市·九年级期末)对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.
抽取件数(件) 100 150 200 500 800 1000
合格频数 88 141 176 445 720 900
合格频率 _______ 0.94 0.88 0.89 0.90 _______
(1)完成上表.
(2)估计任意抽一件衬衣是合格品的概率.
(3)估计出售1200件衬衣,其中次品大约有几件.
【答案】(1)见解析;(2)0.9;(3)120件
【提示】
(1)根据频数除以总数=频率,分别求出即可;
(2)根据(1)中所求即可得出任取1件衬衣是合格品的概率;
(3)利用总数×(1-合格率)可得结果.
【详解】
解:(1)88÷100=0.88,900÷1000=0.9,
填表如下:
抽取件数(件) 100 150 200 500 800 1000
合格频数 88 141 176 445 720 900
合格频率 0.88 0.94 0.88 0.89 0.90 0.9
(2)由(1)中所求即可得出:任取1件衬衣是合格品的概率为:0.9;
(3)1200×(1-0.9)=120件,
∴次品大约有120件.
【名师点拨】
此题主要考查了利用频率估计概率,解答此题关键是估计出任取1件衬衣是合格品的概率.
17.(2021·福建厦门市·九年级期末)某批发商从某节能灯厂购进了50盒额定功率为的节能灯.由于包装工人的疏忽,在包装时混进了的节能灯.每盒中混入的节能灯数如表:【版权所有:21教育】
每盒中混入的节能灯数 0 1 2 3 4
盒数 14 25 9 1 1
(1)平均每盒混入几个的节能灯?
(2)从这50盒中任意抽取一盒,记事件为:该盒中没有混入的节能灯,求事件的概率.
【答案】(1)1;(2)
【提示】
(1)根据图表,直接用混入的的节能灯的个数除以50,求平均数即可;
(2)已知没有混入的节能灯的盒数为14,14除以50即为事件A的概率.
【详解】
解:(1),
答:平均每盒混入的节能灯的个数为1;
(2)已知没有混入的节能灯的盒数为14,
则,
答:事件的概率为.
【名师点拨】
本题考查平均数以及概率的求解,属于基础题,掌握平均数以及概率的求解方法是解决本题的关键.
( http: / / www.21cnjy.com )
教材知识链接
典例及变式
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
课时25.3 用频率估计概率
利用频率估计概率:实际上,我们可以通过大量的重复试验,用一个随机事件发生的频率去估计它的概率.用频率估计概率 ,虽然不像列举法能确切地计算出随机事件的概率,但由于不受“各种结果出现的可能性相等”的条件限制,使得可求概率的随机事件的范围扩大.
( http: / / www.21cnjy.com )
典例1.(2020·天津红桥区·九年级期末)在一个不透明的盒子里,装有4个黑球和若干个白球,它们除颜色外没有任何其他区别,摇匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,共摸球40次,其中10次摸到黑球,则估计盒子中大约有白球( )
A.12个 B.16个 C.20个 D.30个
变式1-1.(2020·河南南阳市·九年级期末)某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到绿灯的概率是( )
A. B. C. D.
变式1-2.(2020·温州市九年级期末)一个不透明的盒子里有n个除颜色外其他完全相同的小球,其中有9个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在30%,那么估计盒子中小球的个数n为( )21世纪教育网版权所有
A.20 B.24 C.28 D.30
变式1-3.(2020·山西九年级期末)如图①所示,平整的地面上有一个不规则图案(图中阴影部分),小明想了解该图案的面积是多少,他采取了以下办法:用一个长为,宽为的长方形,将不规则图案围起来,然后在适当位置随机地朝长方形区域扔小球,并记录小球落在不规则图案上的次数(球扔在界线上或长方形区域外不计实验结果),他将若干次有效实验的结果绘制成了②所示的折线统计图,由此他估计不规则图案的面积大约为( )
( http: / / www.21cnjy.com )
A. B. C. D.
变式1-4.(2020·山东淄博市·九年级期末)小明和同学做“抛掷质地均匀的硬币试验”获得的数据如表:www.21-cn-jy.com
抛掷次数 100 200 300 400 500
正面朝上的频数 53 98 156 202 244
若抛掷硬币的次数为1000,则“正面朝上”的频数最接近( )
A.20 B.300 C.500 D.800
变式1-5.(2020·山西吕梁市期末)在一个暗箱里放有a个除颜色外其它完全相同的球,这a个球中红球只有3个.每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么可以推算出a大约是( )
A.12 B.9 C.4 D.3
典例2.(2020·江苏徐州市·九年级期末)为了解某地七年级学生身高情况,随机抽取部分学生,测得他们的身高(单位:cm),并绘制了如下两幅不完整的统计图,请结合图中提供的信息,解答下列问题.【来源:21·世纪·教育·网】
(1)填空:样本容量为 ,a= ;
(2)把频数分布直方图补充完整;
(3)若从该地随机抽取1名学生,估计这名学生身高低于160cm的概率.
( http: / / www.21cnjy.com )
变式2-1.(2020·灵璧县九年级期中)某种油菜籽在相同条件下的发芽实验结果如下表:
每批粒数n 100 150 200 500 800 1 000
发芽的粒数m 65 111 136 345 560 700
发芽的频率 0.65 0.74 0.68 0.69 a b
(1)a= ,b= ;
(2)这种油菜籽发芽的概率估计值是多少?请简要说明理由;
(3)如果该种油菜籽发芽后的成秧率为90%,则在相同条件下用10 000粒该种油菜籽可得到油菜秧苗多少棵?2-1-c-n-j-y
变式2-3.(2020·吉林长春市·九年级期末)在硬地上抛掷一枚图钉,通常会出现两种情况:
( http: / / www.21cnjy.com )
下面是小明和同学做“抛掷图钉实验”获得的数据:
抛掷次数n 100 200 300 400 500 600 700 800 900 1000
针尖不着地的频数m 63 120 186 252 310 360 434 488 549 610
针尖不着地的频率 0.63 0.60 0.63 0.60 0.62 0.61 0.61
(1)填写表中的空格;
(2)画出该实验中,抛掷图钉钉尖不着地频率的折线统计图;
( http: / / www.21cnjy.com )
(3)根据“抛掷图钉实验”的结果,估计“钉尖着地”的概率为 .
变式2-4.(2020·滕州市九年级期中)一只不透明的袋子中装有个质地、大小均相同的小球,这些小球分别标有数字,甲、乙两人每次同时从袋中各随机摸出个球,并计算摸出的这个小球上数字之和,记录后都将小球放回袋中搅匀,进行重复实验.实验数据如下表
摸球总次数
“和为”出现的频数
“和为”出现的频率
解答下列问题:
如果实验继续进行下去,根据上表数据,出现“和为”的频率将稳定在它的概率附近.估计出现“和为”的概率是_______;21cnjy.com
如果摸出的这两个小球上数字之和为的概率是,那么的值可以取吗?请用列表法或画树状图法说明理由;如果的值不可以取,请写出一个符合要求的值.
1.(2021·日照市九年级期末)某射击运动员在同一条件下的射击成绩记录如下:
射击次数 20 80 100 200 400 1000
“射中九环以上”的次数 18 68 82 168 327 823
“射中九环以上”的频率(结果保留两位小数) 0.90 0.85 0.82 0.84 0.82 0.82
根据频率的稳定性,估计这名运动员射击一次时“射中九环以上”的概率约是( )
A.0.90 B.0.82 C.0.85 D.0.84
2.(2021·四川广元市期末)某学习小组做“用频率估计概率”的实验时,统计了某一结果出现的频率,绘制了如下的表格,则符合这一结果的实验最有可能的是( )
实验次数 100 200 300 500 800 1000 2000
频率 0.365 0.328 0.330 0.334 0.336 0.332 0.333
A.一副去掉大小王的普通扑克牌洗匀后,从中任抽一张牌的花色是红桃
B.在“石头、剪刀、布”的游戏中,小明随机出的是“剪刀”
C.抛一个质地均匀的正六面体骰子,向上的面点数是5
D.抛一枚硬币,出现反面的概率
3.(2021·山东九年级期末)为了解某地区九年级男生的身高情况,随机抽取了该地区1000名九年级男生的身高数据,统计结果如下.21教育网
身高
人数 60 260 550 130
根据以上统计结果,随机抽取该地区一名九年级男生,估计他的身高不低于的概率是( )
A.0.32 B.0.55 C.0.68 D.0.87
4.(2021·湖北襄阳市·九年级期末)一个盒子里装有若干个红球和白球,每个球除颜色以外都相同.5位同学进行摸球游戏,每位同学摸10次(摸出1球后放回,摇匀后再继续摸),其中摸到红球数依次为8,5,9,7,6,则估计盒中红球和白球的个数是( )
A.红球比白球多 B.白球比红球多 C.红球,白球一样多 D.无法估计
5.(2021·河南三门峡市期末)如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
( http: / / www.21cnjy.com )
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;2·1·c·n·j·y
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是( )
A.① B.② C.①② D.①③
6.(2021·辽宁九年级期末)已知不透明的袋中只装有黑、白两种球,这些球除颜色外都相同,其中白球有30个,黑球有n个.随机地从袋中摸出一个球,记录下颜色后,放回袋子中并摇匀,再从中摸出一个球,经过如此大量重复试验,发现摸出的黑球的频率稳定在0.4附近,则n的值约为( )21·世纪*教育网
A.20 B.30 C.40 D.50
7.(2021·湖北随州市·九年级期末)由两个可以自由转动的转盘、每个转盘被分成如图所示的几个扇形、游戏者同时转动两个转盘,如果一个转盘转出了红色,另一转盘转出了蓝色,游戏者就配成了紫色,下列说法正确的是( )www-2-1-cnjy-com
( http: / / www.21cnjy.com )
A.两个转盘转出蓝色的概率一样大
B.如果A转盘转出了蓝色,那么B转盘转出蓝色的可能性变小了
C.游戏者配成紫色的概率为
D.先转动A转盘再转动B转盘和同时转动两个转盘,游戏者配成紫色的概率不同
8.(2021·广东九年级期末)某人从一袋黄豆中取出25粒染成蓝色后放回袋中并混合均匀,接着抓出100粒黄豆,数出其中有5粒蓝色的黄豆,则估计这袋黄豆约有( )
A.380粒 B.400粒 C.420粒 D.500粒
9.(2021·广东九年级期末)在一个不透明的口袋中,装有若干个红球和3个黄球,它们除颜色外没有任何区别,摇匀后从中随机摸出一个球,记下颜色后再放回口袋中,通过大量重复摸球实验发现,摸到黄球的频率是,则估计盒子中红球的个数大约是
A.20个 B.16个 C.15个 D.12个
10.(2021·南京市九年级期末)在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为( )
A.16 B.20 C.24 D.28
11.(2021·河南三门峡市·九年级期末)大数据提示技术为打赢疫情防控阻击战发挥了重要作用.如图是小明同学的苏康码(绿码)示意图,用黑白打印机打印于边长为2cm的正方形区域内,为了估计图中黑色部分的总面积,在正方形区域内随机掷点,经过大量重复试验,发现点落入黑色部分的频率稳定在0.6左右,据此可以估计黑色部分的总面积约为________.
( http: / / www.21cnjy.com )
12.(2021·武汉市九年级期末)在一个不透明的袋中装有除颜色外其余均相同的n个小球,其中有5个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,之后把它放回袋中,搅匀后,再继续摸出一球,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数 100 1000 5000 10000 50000 100000
摸出黑球次数 46 487 2506 5008 24996 50007
根据列表,可以估计出n的值是 .
13.(2021·河南九年级期末)在一个不透明的袋子中装有3个白球和若干个红球,这些球除颜色外都相同.每次从袋子中随机摸出一个球,记下颜色后再放回袋中,通过多次重复试验发现摸出红球的频率稳定在0.7附近,则袋子中红球约有___个.21*cnjy*com
14.(2021·南昌市九年级期末)技术变革带来产品质量的提升.某企业技术变革后,抽检某一产品2020件,欣喜发现产品合格的频率已达到0.9911,依此我们可以估计该产品合格的概率为_______.(结果要求保留两位小数)【来源:21cnj*y.co*m】
15.(2021·广东中山市·九年级期末)某林业部门统计某种幼树在一定条件下的移植成活率,结果如下表所示:【出处:21教育名师】
移植总数(n) 200 500 800 2000 12000
成活数(m) 187 446 730 1790 10836
成活的频率 0.935 0.892 0.913 0.895 0.903
根据表中数据,估计这种幼树移植成活率的概率为___(精确到0.1).
16.(2021·浙江嘉兴市·九年级期末)对一批衬衣进行抽检,统计合格衬衣的件数,获得如下频数表.
抽取件数(件) 100 150 200 500 800 1000
合格频数 88 141 176 445 720 900
合格频率 _______ 0.94 0.88 0.89 0.90 _______
(1)完成上表.
(2)估计任意抽一件衬衣是合格品的概率.
(3)估计出售1200件衬衣,其中次品大约有几件.
17.(2021·福建厦门市·九年级期末)某批发商从某节能灯厂购进了50盒额定功率为的节能灯.由于包装工人的疏忽,在包装时混进了的节能灯.每盒中混入的节能灯数如表:21·cn·jy·com
每盒中混入的节能灯数 0 1 2 3 4
盒数 14 25 9 1 1
(1)平均每盒混入几个的节能灯?
(2)从这50盒中任意抽取一盒,记事件为:该盒中没有混入的节能灯,求事件的概率.
( http: / / www.21cnjy.com )
教材知识链接
典例及变式
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)