2021-2022学年数学人教B版(2019)选择性必修第二册4.2随机变量讲义(Word含答案)

文档属性

名称 2021-2022学年数学人教B版(2019)选择性必修第二册4.2随机变量讲义(Word含答案)
格式 docx
文件大小 649.7KB
资源类型 教案
版本资源 人教B版(2019)
科目 数学
更新时间 2021-10-14 19:42:49

图片预览

文档简介

4.2随机变量(新课)
知识梳理
离散型随机变量分布列
①如果对于随机变量可能取的值,可以按一定次序一一列出,这样的随机变量叫做离散型随机变量.
②设离散型随机变量可能取的值为:
取每一个值的概率,则称表为随机变量的概率分布列。
… …
P … …
③随机变量的数学期望:方差:
超几何分布
二项分布
Pn ( k ) Cnk p k q nk , (k 0,1,2,…, n, q 1 p) ,
~ B(n, p) ,则 E np , D np(1 p) 。
正态分布
1.正态曲线的定义
函数的图像为正态分布密谋曲线,简称正态曲线
注: 是正态分布的期望, 是正态分布的标准差。
2.正态曲线的性质:
①曲线位于 x 轴上方,与 x 轴不相交;
②曲线是单峰的,它关于直线 x= 对称;
③曲线在 x= 处达到峰值
④曲线与 x 轴之间的面积为 1;
⑤当 一定时,曲线随着 的变化而沿 x 轴平移;
⑥当 一定时,曲线形状由 确定。 越小,曲线越“瘦高”; 越大,曲线越“矮胖”。
典例解析
考点一:离散型随机变量分布列
例1.某电视台“挑战主持人”节目的挑战者闯第一关需要回答三个问题,其中前两个问题回答正确各得分,回答不正确得分,第三个问题回答正确得分,回答不正确得分.如果一位挑战者回答前两个问题正确的概率都是,回答第三个问题正确的概率为,且各题回答正确与否相互之间没有影响.若这位挑战者回答这三个问题的总分不低于分就算闯关成功.
()求至少回答对一个问题的概率.
()求这位挑战者回答这三个问题的总得分的分布列.
()求这位挑战者闯关成功的概率.
变式1.甲、乙是两名射击运动员,根据历史统计数据,甲一次射击命中、、环的概率分别为、、,乙一次射击命中、环的概率分别为、.一轮射击中,甲、乙各射击一次.甲、乙射击相互独立,每次射击也互不影响.
(1)在一轮射击中,求甲命中的环数不高于乙命中的环数的概率;
(2)记一轮射击中,甲、乙命中的环数之和为,求的分布列;
(3)进行三轮射击,求甲、乙命中的环数之和不低于环的概率.
变式2.经调查统计,网民在网上光顾某淘宝小店,经过一番浏览后,对该店铺中的A,B,C三种商品有购买意向.该淘宝小店推出买一件送5元优惠券的活动.已知某网民购买,, 商品的概率分别为, , ,至少购买一件的概率为,最多购买两件种商品的概率为.假设该网民是否购买这三种商品相互独立.
(1)求该网民分别购买,两种商品的概率;
(2)用随机变量表示该网民购买商品所享受的优惠券钱数,求X的分布列和数学期望.
考点二:超几何分布
例2.2019年某市举办“好心杯”少年美术书法作品比赛,某赛区收到200件参赛作品,为了解作品质量,现从这些作品中随机抽取12件作品进行试评.成绩如下:67,82,78,86,96,81,73,84,76,59,85,93,其中成绩不低于85分(含85分)的作品认为为优秀作品,现从这12件作品中任意抽取3件.
(1)恰好抽到2件优秀作品的概率;
(2)若抽到优秀作品的件数为,求的分布列.
变式1.在一次购物抽奖活动中,假设某10张券中有一等奖奖券1张,可获价值50元的奖品;有二等奖奖券3张,每张可获价值10元的奖品;其余6张没奖.某顾客从此10张奖券中任抽2张,求:
(1)该顾客中奖的概率;
(2)该顾客获得的奖品总价值X(元)的概率分布列.
变式2.五一劳动节放假,某商场进行一次大型抽奖活动.在一个抽奖盒中放有红、橙、黄、绿、蓝、紫的小球各2个,分别对应1分、2分、3分、4分、5分、6分.从袋中任取3个小球,按3个小球中最大得分的8倍计分,计分在20分到35分之间即为中奖.每个小球被取出的可能性都相等,用表示取出的3个小球中最大得分,求:
(1)取出的3个小球颜色互不相同的概率;
(2)随机变量的概率分布和数学期望;
(3)求某人抽奖一次,中奖的概率.
考点三:二项分布
例3.甲、乙二人进行一次象棋比赛,每局胜者得1分,负者得0分(无平局),约定一方得4分时就获得本次比赛的胜利并且比赛结束,设在每局比赛中,甲获胜的概率为,乙获胜的概率为,各局比赛结果相互独立,已知前3局中,甲得2分,乙得1分.
(1)求乙获得这次比赛胜利的概率;
(2)设表示从第4局开始到比赛结束所进行的局数,求的分布列及数学期望.
变式1.设甲、乙两位同学上学期间,每天7:10之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(1)用表示甲同学上学期间的每周五天中7:10之前到校的天数,求随机变量的分布列和数学期望;
(2)记“上学期间的某周的五天中,甲同学在7:10之前到校的天数比乙同学在7:10之前到校的天数恰好多3天”为事件,求事件发生的概率.
变式2.将一个半径适当的小球放入如图所示的容器最上方的入口处,小球自由下落,小球在下落的过程中,将遇到黑色障碍物3次,最后落入袋或袋中.已知小球每次遇到障碍物时,向左、右两边下落的概率分别是.
(1)分别求出小球落入袋和袋中的概率;
(2)在容器的入口处依次放入4个小球,记为落入袋中的小球的个数.求的分布列、数学期望和方差.
考点四:正态分布
例4.已知随机变量服从二项分布,其期望,随机变量服从正态分布,若,则( )
A. B. C. D.
变式1.设随机变量服从正态分布,若,则实数等于( )
A. B. C. D.
变式2.某校有1000人参加某次模拟考试,其中数学考试成绩近似服从正态分布,试卷满分150分,统计结果显示数学成绩优秀(高于120分)的人数占总人数的,则此次数学考试成绩在90分到105分之间的人数约为( )
A.150 B.200 C.300 D.400
例5.近年来,双十一购物狂欢节(简称“双11”)活动已成为中国电子商务行业年度盛事,某网络商家为制定2018年“双11”活动营销策略,调查了2017年“双11”活动期间每位网购客户用于网购时间(单位:小时),发现近似服从正态分布.
(1)求的估计值;
(2)该商家随机抽取参与2017年“双11”活动的10000名网购客户,这10000名客户在2017年“双11”活动期间,用于网购时间属于区间的客户数为.该商家计划在2018年“双11”活动前对这名客户发送广告,所发广告的费用为每位客户0.05元. 求该商家所发广告总费用的平均估计值.
附:若随机变量服从正态分布,则,
,.
变式1.某市环保部门对该市市民进行了一次垃圾分类知识的网络问卷调查,每一位市民仅有一次参加机会,通过随机抽样,得到参加问卷调查的人的得分(满分:分)数据,统计结果如下表所示.
组别
频数
(1)已知此次问卷调查的得分服从正态分布,近似为这人得分的平均值(同一组中的数据用该组区间的中点值为代表),请利用正态分布的知识求;
(2)在(1)的条件下,环保部门为此次参加问卷调查的市民制定如下奖励方案.
(ⅰ)得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;
(ⅱ)每次赠送的随机话费和相应的概率如下表.
赠送的随机话费/元
概率
现市民甲要参加此次问卷调查,记为该市民参加问卷调查获赠的话费,求的分布列及数学期望.
附:,若,则,,.
变式2.习近平总书记在党的十九大工作报告中提出,永远把人民对美好生活的向往作为奋斗目标.在这一号召的引领下,全国人民积极工作,健康生活.当前,“日行万步”正成为健康生活的代名词.某学校工会积极组织该校教职工参与“日行万步”活动.界定日行步数不足千步的人为“不健康生活方式者”,不少于千步的人为“超健康生活方式者”,其他为“一般生活方式者”.某日,学校工会随机抽取了该校名教职工,统计他们的日行步数,按步数分组,得到频率分布直方图如图所示:
(1)求名教职工日行步数(千步)的样本平均数(结果四舍五入保留整数);
(2)由直方图可以认为该校教职工的日行步数(千步)服从正态分布,其中为样本平均数,标准差的近似值为,求该校被抽取的名教职工中日行步数(千步)的人数(结果四舍五入保留整数);
(3)用样本估计总体,将频率视为概率.若工会从该校教职工中随机抽取人作为“日行万步”活动的慰问奖励对象,规定:“不健康生活方式者”给予精神鼓励,奖励金额每人元;“一般生活方式者”奖励金额每人元;“超健康生活方式者”奖励金额每人元.求工会慰问奖励金额的分布列和数学期望.
附:若随机变量服从正态分布,
则,.
巩固练习
1.探月工程“嫦娥四号”探测器于2018年12月8日成功发射,实现了人类首次月球背面软着陆.以嫦娥四号为任务圆满成功为标志,我国探月工程四期和深空探测工程全面拉开序幕.根据部署,我国探月工程到2020年前将实现“绕、落、回”三步走目标.为了实现目标,各科研团队进行积极的备战工作.某科研团队现正准备攻克甲、乙、丙三项新技术,甲、乙、丙三项新技术独立被攻克的概率分别为,若甲、乙、丙三项新技术被攻克,分别可获得科研经费万,万,万.若其中某项新技术未被攻克,则该项新技术没有对应的科研经费.
(1)求该科研团队获得万科研经费的概率;
(2)记该科研团队获得的科研经费为随机变量,求的分布列与数学期望.
2.改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月,两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中,两种支付方式都不使用的有5人,样本中仅使用和仅使用的学生的支付金额分布情况如下:
交付金额(元) 支付方式 大于2000
仅使用 18人 9人 3人
仅使用 10人 14人 1人
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月,两种支付方式都使用的概率;
(Ⅱ)从样本仅使用和仅使用的学生中各随机抽取1人,以表示这2人中上个月支付金额大于1000元的人数,求的分布列和数学期望;
3.高考改革后,学生除了语数外三门必选外,可在类科目:物理、化学、生物和类科目:政治、地理、历史共6个科目中任选3门.
(1)求小明同学选类科目数的分布列.
(2)求小明同学从类和类科目中均至少选择1门科目的概率.
4.某工厂生产的10件产品中,有6件为一等品,4件为二等品.
(1)随机选取2件产品,至少有1件二等品的概率是多少?
(2)随机选取3件产品,其中一等品的件数记为X,求X的分布列.
5.甲、乙两人参加一次英语口语考试,已知在备选的10道试题中,甲能答对其中的6题,乙能答对其中的8题,规定每次考试都从备选题中随机抽出3道题进行测试,至少答对2题才算合格.
(1)设甲、乙两人在考试中答对的题数分别为、,写出随机变量、的分布列;
(2)分别求甲、乙两人考试合格的概率;
(3)求甲、乙两人至少有一人考试合格的概率.
6.某小组共10人,利用假期参加义工活动,已知参加义工活动次数为1,2,3的人数分别为3,3,4,现从这10人中随机选出2人作为该组代表参加座谈会.
设A为事件“选出的2人参加义工活动次数之和为4”,求事件A发生的概率;
设X为选出的2人参加义工活动次数之差的绝对值,求随机变量X的分布列和数学期望.
7.甲、乙两名同学进行乒乓球比赛,规定每一局比赛获胜方记1分,失败方记0分,谁先获得5分就获胜,比赛结束,假设每局比赛甲获胜的概率都是.
(1)求比赛结束时恰好打了7局的概率;
(2)若现在的比分是3比1甲领先,记表示结束比赛还需打的局数,求的分布列及期望.
8.某公司的一次招聘中,应聘者都要经过三个独立项目,,的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,每个项目测试的概率都是.
(1)求甲恰好通过两个项目测试的概率;
(2)设甲、乙、丙三人中被录用的人数为,求的概率分布和数学期望.
9.一款击鼓小游戏的规则如下:每盘游戏都需击鼓三次,每次击鼓要么出现一次音乐,要么不出现音乐;每盘游戏击鼓三次后,出现一次音乐获得10分,出现两次音乐获得20分,出现三次音乐获得100分,没有出现音乐则扣除200分(即获得分).设每次击鼓出现音乐的概率为,且各次击鼓出现音乐相互独立.
(1)设每盘游戏获得的分数为,求的分布列.
(2)玩过这款游戏的许多人都发现,若干盘游戏后,与最初的分数相比,分数没有增加反而减少了,请运用概率统计的相关知识分析分数减少的原因.
10.乒乓球单打决赛,采用7局4胜,每一局都是一方胜、一方负,没有平局,先胜4局者获胜,若没有一方赢够4局,比赛继续,直到有一方赢够4局为止,比赛结束,现甲、乙两人决赛,每局甲胜乙的概率为.
(1)求打了6局甲取胜的概率;
(2)求打了7局比赛结束的概率.
11.已知随机变量,,则( )
A.0.2 B.0.4 C.0.6 D.0.8
12.已知随机变量服从正态分布,若,则( )
A. B. C. D.
13.若,且,则等于( )
A.0.45 B.0.3 C.0.1 D.0.05
14.为评估设备生产某种零件的性能,从设备生产零件的流水线上随机抽取个零件作为样本,测量其直径后,整理得到下表:
直径 58 59 61 62 63 64 65 66 67 68 69 70 71 73 合计
个数 1 1 3 5 6 19 33 18 4 4 2 1 2 1 100
经计算,样本直径的平均值,标准差,以频率值作为概率的估计值.
(1)为评判一台设备的性能,从该设备加工的零件中任意抽取一件,记其直径为,并根据以下不等式进行评判(表示相应事件的概率):①;②;③.评判规则为:若同时满足上述三个不等式,则设备等级为甲;若仅满足其中两个,则等级为乙;若仅满足其中一个,则等级为丙;若全部都不满足,则等级为丁,试判断设备的性能等级.
(2)将直径小于等于或直径大于的零件认为是次品.
①从设备的生产流水线上随机抽取件零件,计算其中次品件数的数学期望;
②从样本中随机抽取件零件,计算其中次品件数的概率分布列和数学期望.
15.某商场举行促销活动,有两个摸奖箱,箱内有一个“”号球,两个“”号球,三个“”号球、四个无号球,箱内有五个“”号球,五个“”号球,每次摸奖后放回,每位顾客消费额满元有一次箱内摸奖机会,消费额满元有一次箱内摸奖机会,摸得有数字的球则中奖,“”号球奖元,“”号球奖元,“”号球奖元,摸得无号球则没有奖金.
(1)经统计,顾客消费额服从正态分布,某天有位顾客,请估计消费额(单位:元)在区间内并中奖的人数.(结果四舍五入取整数)
附:若,则,.
(2)某三位顾客各有一次箱内摸奖机会,求其中中奖人数的分布列.
(3)某顾客消费额为元,有两种摸奖方法,
方法一:三次箱内摸奖机会;
方法二:一次箱内摸奖机会.
请问:这位顾客选哪一种方法所得奖金的期望值较大.
4.2 随机变量答案
例题分析
例1.(Ⅰ);(Ⅱ)随机变量的分布列是: (Ⅲ).
变式1.(1);(2)随机变量的分布列如下表所示:(3).
变式2.(1);(2)X的分布列为,期望
例2.(1);(2)的分布列为:
0 1 2 3
变式1.(1);(2)X的分布列为:
X 0 10 20 50 60
P
变式2.(1)(2)随机变量的概率分布为,数学期望为(3)
2 3 4 5 6
例3.(1);(2)的分布列为:期望.
2 3 4
变式1.(1)随机变量的分布列为:;(2).
X 0 1 2 3 4 5
P
变式2.(1) ;(2)则的分布列为:
0 1 2 3 4
例4.D
变式1.B
变式2.C
例5.(1);(2)238.6
变式1.(1);(2)随机变量的分布列如下表所示:
变式2.(1).(2)54人.(3)的分布列为:
巩固练习
1.(1);(2)随机变量的分布列为:期望
0 20 40 60 80 100 120
2.(Ⅰ)(Ⅱ)的分布列为:期望是1
0 1 2
3.(1)的分布列为:(2).
0 1 2 3
4.(1);(2)X的分布列为:
5.(1)随机变量、分布列为:(2)甲、乙两人考试合格的概率分别为,(3)
0 1 2 3
1 2 3
6.(1) ; (2)随机变量的分布列为:.
0 1 2
7.(1);(2)的分布列为,期望.
2 3 4 5
8.(1);(2) 随机变量X的概率分布表为:期望
X 0 1 2 3
P
9.(1)分布列为:(2).这说明每盘游戏平均得分是负分,由概率统计的相关知识可知:许多人经过若干盘游戏后,与最初的分数相比,分数没有增加反而会减少.
10 20 100
10.(1);(2).
11.A
12.D
13.D
14.(1)其性能等级为丙;(2)①;②的概率分布列为:期望为.
15.(1) 中奖的人数约为人.(2) 分布列为:(3)选方法二所得奖金的期望值较大.
(或) (或) (或) (或)
16