2021-2022学年湘教版数学八年级下册期中测试卷(word版、含答案)

文档属性

名称 2021-2022学年湘教版数学八年级下册期中测试卷(word版、含答案)
格式 doc
文件大小 238.5KB
资源类型 教案
版本资源 湘教版
科目 数学
更新时间 2021-10-14 17:41:43

图片预览

文档简介

第二学期期中测试卷
一、选择题(每题3分,共24分)
1.在Rt△ABC中,∠C=90°,∠B=40°,则∠A的度数是(  )
A.60° B.30° C.50° D.40°
2.以下有关勾股定理证明的图形中,不是中心对称图形的是(  )
3.如图,一束太阳光线平行照射在放置于地面的正六边形上,若∠1=19°,则∠2的度数为(  )
A. 41° B. 51° C. 42° D. 49°
INCLUDEPICTURE"image203.tif" INCLUDEPICTURE "E:\\22春\\8数XJ\\image203.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\8数XJ\\image203.tif" \* MERGEFORMATINET
4.如图,在Rt△ABC中,∠ACB=90°,点D为斜边AB的中点,若CD=3 cm,则下列说法正确的是(  )
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\8SXJJT91.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\8SXJJT91.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\8SXJJT91.tif" \* MERGEFORMATINET
A.AC=3 cm B.BC=6 cm
C.AB=6 cm D.AC=AD=3 cm
5.已知平行四边形ABCD的周长为20,且AB∶BC=2∶3,则CD的长为(  )
A.4 B.5 C.6 D.8
6.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,D,E,F分别是AB,AC,AD的中点,若BC=2,则EF的长度为(  )
A. B.1
C. D.
7.如图,在∠AOB中,以点O为圆心,任意长为半径作弧,交射线OA于点C,交射线OB于点D,再分别以C,D为圆心,OC的长为半径作弧,两弧在∠AOB的内部交于点E,作射线OE,若OC=10,OE=16,则C,D两点之间距离为(  )
A.10 B.12
C.13 D.8
8.如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF,AP.给出下列5个结论:①AP=EF;②AP⊥EF;③△APD一定是等腰三角形;④∠PFE=∠BAP;⑤PD=EC.其中正确的结论有(  )
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-16.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-16.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-16.tif" \* MERGEFORMATINET
A.2个 B.3个 C.4个 D.5个
二、填空题(每题4分,共32分)
9.正五边形每个外角的大小是________度.
10.如图,A,B两点被池塘隔开,不能直接测量其距离.于是,小明在岸边选一点C,连接CA,CB,分别延长CA,CB到点M,N,使AM=AC,BN=BC,测得MN=200 m,则A,B间的距离为________m.
11.矩形、菱形、正方形的对角线都具有的性质是______________.
12.如图,一根竹子高10尺,折断后竹子顶端落在离竹子底端3尺处,折断处离地的高度是________尺.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-17.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-17.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-17.tif" \* MERGEFORMATINET
13.如图,矩形ABCD的对角线AC和BD相交于点O,∠ADB=30°,AB=4,则OC=________.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ428.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ428.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ428.tif" \* MERGEFORMATINET
14.如图,在△ABC中,AB=6 cm,BC=7 cm,AC=5 cm,D,E,F分别是AB,BC,AC的中点,则四边形ADEF的周长等于________cm.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ429.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ429.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ429.tif" \* MERGEFORMATINET
15.在△ABC中,如果AB=5,AC=4,BC边上的高线AD=3,那么BC的长为______________.
16.如图,在正方形ABCD中,对角线AC与BD相交于点O,E为BC上一点,CE=5,F为DE的中点.若△CEF的周长为18,则OF的长为________.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\ww85.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\ww85.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\ww85.tif" \* MERGEFORMATINET
三、解答题(17,18题每题7分,24题10分,其余每题8分,共64分)
17.如图,在Rt△ABC中,∠BAC=90°,AD是BC边上的中线,ED⊥BC于D,交BA的延长线于点E,若∠E=35°,求∠BDA的度数.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ431.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ431.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ431.tif" \* MERGEFORMATINET
18.如图,在正方形网格中,每个小正方形的边长均为1,△ABC的三个顶点都在格点上.
(1)求AB,AC,BC的长;
(2)判断△ABC的形状,并说明理由.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ432.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ432.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ432.tif" \* MERGEFORMATINET
19.如图,点E为正方形ABCD外一点,∠AEB=90°,将Rt△ABE绕A点逆时针方向旋转90°得到△ADF,DF的延长线交BE于H点.
(1)试判定四边形AFHE的形状,并说明理由;
(2)已知BH=7,BC=13,求DH的长.
INCLUDEPICTURE"image204.tif" INCLUDEPICTURE "E:\\22春\\8数XJ\\image204.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\8数XJ\\image204.tif" \* MERGEFORMATINET
20.如图,在 ABCD中,以点A为圆心,AB长为半径画弧交AD于点F,再分别以点B,F为圆心,大于BF的长为半径画弧,两弧交于一点P,连接AP并延长交BC于点E,连接EF.
(1)根据条件与作图信息知四边形ABEF是________;
A.非特殊的平行四边形 B.矩形
C.菱形 D.正方形
(2)设AE与BF相交于点O,若四边形ABEF的周长为16,BF=4,求AE的长和∠C的度数.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ434.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ434.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ434.tif" \* MERGEFORMATINET
21.如图,在△ABC中,∠B=50°,∠C=70°,AD是△ABC的角平分线,DE⊥AB于点E.
(1)求∠EDA的度数;
(2)若AB=10,AC=8,DE=3,求S△ABC.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ435.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ435.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ435.tif" \* MERGEFORMATINET
22.如图,在Rt△ABC中,∠BAC=90°,D是BC的中点,E是AD的中点,过点A作AF∥BC交BE的延长线于点F,连接CF.
(1)证明:四边形ADCF是菱形;
(2)若AC=4,AB=5,求菱形ADCF的面积.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-19.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-19.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\J1-19.tif" \* MERGEFORMATINET
23.如图,在△ABC中,AB=AC,DE是过点A的直线,BD⊥DE于点D,CE⊥DE于点E.
(1)若B,C在直线DE的同侧(如图①所示),且AD=CE.求证:AB⊥AC;
(2)若B,C在直线DE的两侧(如图②所示),且AD=CE,其他条件不变,AB与AC仍垂直吗?若垂直,请给出证明;若不垂直,请说明理由.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ437.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ437.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ437.tif" \* MERGEFORMATINET
24.如图,已知四边形ABCD为正方形,点E为线段AC上一点,连接DE,过点E作EF⊥DE,交BC于点F,以DE,EF为邻边作矩形DEFG,连接CG.
(1)求证:矩形DEFG是正方形;
(2)若AB=2,CE=,求CG的长度;
(3)当线段DE与正方形ABCD的某条边的夹角是30°时,直接写出∠EFC的度数.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ439.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ439.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ439.tif" \* MERGEFORMATINET
答案
一、1.C 2.A
3.A 点拨:如图,∵正六边形的每个内角等于120°,每个外角等于60°,∴∠FAD=120°-∠1=101°,∠ADB=60°,
∴∠ABD=101°-60°=41°.
∵光线是平行的,∴∠2 =∠ABD=41°.故选A.
INCLUDEPICTURE"答案+33.tif" INCLUDEPICTURE "E:\\22春\\8数XJ\\答案+33.tif" \* MERGEFORMATINET INCLUDEPICTURE "E:\\22春\\8数XJ\\答案+33.tif" \* MERGEFORMATINET
4.C 5.A
6.B 点拨:∵∠ACB=90°,∠A=30°,∴AB=2BC=4,又∵D是AB的中点,∴CD=AB=2.∵E,F分别是AC,AD的中点,∴EF为△ACD的中位线,∴EF=CD=1.
7.B 点拨:如图,连接CD交OE于点F,
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\D1-2.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\D1-2.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\D1-2.tif" \* MERGEFORMATINET
连接DE,CE,由作图过程可知OC=OD=DE=CE,
∴四边形ODEC是菱形.
∴OE⊥CD,OF=FE=OE=8,∵OC=10,
∴CF=DF==6,∴CD=2CF=12.
8.C
二、9.72 
10.100
11.对角线互相平分
12.
13.4
14.11 点拨:∵D,E分别是AB,BC的中点,∴DE∥AC,DE=AC=2.5 cm,同理可得EF∥AB,EF=AB=3 cm,∴四边形ADEF是平行四边形,∴四边形ADEF的周长=2×(2.5+3)=11(cm).
15.4+或4- 点拨:如图①,当点D落在BC上时,∵AB=5,AD=3,AC=4,AD⊥BC,∴BD==4,CD==,则BC=BD+CD=4+.
如图②,当点D落在BC的延长线上时,
∵AB=5,AD=3,AC=4,AD⊥BC,
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ633.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ633.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ633.tif" \* MERGEFORMATINET
∴BD==4,CD==,则BC=BD-CD=4-.
综上所述,BC的长为4+或4-.
16. 点拨:∵CE=5,△CEF的周长为18,∴CF+EF=18-5=13.∵F为DE的中点,∴DF=EF.又四边形ABCD是正方形,∴∠BCD=90°,∴CF=DE=DF,∴DE=EF+DF=EF+CF=13,∴CD===12.∵四边形ABCD是正方形,∴BC=CD=12,O为BD的中点,∴OF是△BDE的中位线,∴OF=(BC-CE)=×(12-5)=.
三、17.解:∵ED⊥BC,∴∠BDE=90°,又∵∠E=35°,∴∠B=55°.
∵∠BAC=90°,AD是BC边上的中线,∴DA=DB,
∴∠B=∠DAB=55°,∴∠BDA=180°-55°-55°=70°.
18.解:(1)根据勾股定理,得AB=,AC=,BC=.
(2)△ABC是等腰直角三角形.
理由如下:
∵AB2+AC2=5+5=10=BC2,
∴△ABC是直角三角形.
∵AB=AC,∴△ABC是等腰直角三角形.
19.解:(1)四边形AFHE是正方形.理由如下:
根据旋转得∠AEB=∠AFD=90°, AE=AF,∠DAF=∠EAB.
∴∠AFH=90°.
∵四边形ABCD是正方形,
∴∠DAB=90°,
∴∠FAE=∠FAB+∠BAE=∠FAB+∠DAF=∠DAB=90°,
∴∠AEB=∠AFH=∠FAE=90°,∴四边形AFHE是矩形.
又∵AE=AF,∴四边形AFHE是正方形.
(2)连接BD.
由题意知BC=CD=13,
∴在Rt△BCD 中,BD==13 .
∵四边形AFHE是正方形,
∴∠EHD=90°.∴∠DHB=90°.
在Rt△DHB 中,DH=,
又BH=7,∴DH =17.
20.解:(1)C
(2)易知AE⊥BF,OB=OF,AO=EO,BE=EF,AB∥EF.
∵BF=4,∴OB=BF=2.
∵四边形ABEF的周长为16,四边形ABEF是菱形,∴BE=4.
在Rt△OBE中,根据勾股定理,得OE=2 ,∴AE=2OE=4 .
∵BE=BF=EF=4,
∴△BEF是等边三角形,∴∠FEB=60°.
∵四边形ABCD是平行四边形,∴AB∥CD.
∵AB∥EF,∴CD∥EF,∴∠C=∠BEF=60°.
21.解:(1)∵在△ABC中,∠B=50°,∠C=70°,
∴∠BAC=180°-∠B-∠C=180°-50°-70°=60°.
∵AD是△ABC的角平分线,∴∠BAD=∠BAC=×60°=30°.
∵DE⊥AB,∴∠DEA=90°,
∴∠EDA=180°-∠BAD-∠DEA=180°-30°-90°=60°.
(2)如图,过点D作DF⊥AC于F,
∵AD是△ABC的角平分线,DE⊥AB,∴DF=DE=3,
又∵AB=10,AC=8,
∴S△ABC=AB·DE+AC·DF=×10×3+×8×3=27.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ635.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ635.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\19X8XJ635.tif" \* MERGEFORMATINET
22.(1)证明:∵AF∥BC,∴∠AFE=∠DBE.
∵E是AD的中点,∴AE=DE,
在△AFE和△DBE中,
∴△AFE≌△DBE. ∴AF=DB.
∵D是BC的中点,∴DB=DC,
∴AF=CD,∴四边形ADCF是平行四边形,
∵∠BAC=90°,D是BC的中点,
∴AD=DC=BC,∴四边形ADCF是菱形.
(2)解:如图,连接DF,∵AF∥BC,且由(1)知AF=BD,
∴四边形ABDF是平行四边形,∴DF=AB=5,
∴S菱形ADCF=AC·DF=×4×5=10.
INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\D1-3.tif" \* MERGEFORMAT INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\D1-3.tif" \* MERGEFORMATINET INCLUDEPICTURE "F:\\21春初中\\数学\\8XJ\\word\\D1-3.tif" \* MERGEFORMATINET
23.(1)证明:∵BD⊥DE,CE⊥DE,
∴∠ADB=∠AEC=90°.
在Rt△ABD和Rt△CAE中,
∴Rt△ABD≌Rt△CAE.∴∠DBA=∠CAE.
∵∠DAB+∠DBA=90°,∴∠BAD+∠CAE=90°.
∴∠BAC=180°-(∠BAD+∠CAE)=90°.
∴AB⊥AC.
(2)解:AB⊥AC.
证明:同(1)可证得Rt△ABD≌Rt△CAE.
∴∠DAB=∠ECA.
∵∠CAE+∠ECA=90°,
∴∠CAE+∠BAD=90°,
即∠BAC=90°,∴AB⊥AC.
24.(1)证明:过点E作EP⊥CD于点P,EQ⊥BC于点Q.
∵四边形ABCD为正方形,∴∠DCA=∠BCA,
∴EQ=EP.
由题易知∠QEF+∠FEC=45°,
∠PED+∠FEC=45°,
∴∠QEF=∠PED.
在△EQF和△EPD中,
∴△EQF≌△EPD,
∴EF=ED,
∴矩形DEFG是正方形.
(2)解:由题意知AC=2 .
∵CE=,∴AE=. ∴AE=CE.
∴点F与点C重合,此时△DCG是等腰直角三角形,易知CG=.
(3)解:∠EFC=120°或30°.
同课章节目录