中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
考点12 函数的应用(一)
一、单选题
1.国内快递1 000 g以内的包裹的邮资标准如下表:
运送距离x(km) 0<x≤500 500<x≤1 000 1 000<x≤1 500 …
邮资y(元) 5.00 6.00 7.00 …
如果某人在西安要快递800 g的包裹到距西安1 200 km的某地,那么他应付的邮资是( )
A.5.00元 B.6.00元
C.7.00元 D.8.00元
【答案】C
【解析】通过邮资标准表可得到,当x=1 200时,y=7.00元.故选C.
2.已知等腰三角形的周长为,底边长是腰长的函数,则函数的定义域为( )
A. B. C. D.
【答案】A
【解析】由题设有,由得,故选A.
3.某厂印刷某图书总成本y(元)与图书日印量x(本)的函数解析式为y=5x+3000,而图书出厂价格为每本10元,则该厂为了不亏本,日印图书至少为( )
A.200本 B.400本 C.600本 D.800本
【答案】C
【解析】该厂为了不亏本,日印图书至少为x本,则利润函数f(x)=10x-(5x+3000)≥0,解得x≥600.
∴该厂为了不亏本,日印图书至少为600本.故选C.
4.某企业一个月生产某种商品万件时的生产成本为(万元),一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为( )
A.139万元 B.149万元 C.159万元 D.169万元
【答案】C
【解析】利润,故最大利润为159万元,故选C.
5.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )
A. B.
C. D.
【答案】D
【解析】设一段长为,则另一段长为,两个正三角形的面积之和为,
且 ,.则,
所以当时,.故选D.
6.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了获得最大利润,每个商品的售价应定为( )
A.95元 B.100元 C.105元 D.110元
【答案】A
【解析】设售价在90元的基础上涨元
因为这种商品每个涨价1元,其销售量就减少20个,所以若涨元,则销售量减少,按90元一个能全部售出,则按元售出时,能售出个,每个的利润是元
设总利润为元,则,对称轴为
所以时,有最大值,售价则为95元,
所以售价定为每个95元时,利润最大.故选.
7.已知某旅游城市在过去的一个月内(以30天计),第t天的旅游人数(万人)近似地满足,而人均消费(元)近似地满足.则求该城市旅游日收益的最小值是( )
A.480 B.120 C.441 D.141
【答案】C
【解析】记旅游日收益为,当时,,,
所以,
所以,取等号时;
当时,,,
所以,显然在上单调递减,
所以,
由上可知:旅游日收益的最小值为万元,故选C.
8.新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第天,每个检测对象从接受检测到检测报告生成平均耗时(单位:小时)大致服从的关系为(、为常数).已知第天检测过程平均耗时为小时,第天和第天检测过程平均耗时均为小时,那么可得到第天检测过程平均耗时大致为( )
A.小时 B.小时 C.小时 D.小时
【答案】C
【解析】由第天和第天检测过程平均耗时均为小时知,,
所以,得.
又由知,,所以当时,,故选C.
二、多选题
9.某杂志以每册元的价格发行时,发行量为万册.经过调查,若单册价格每提高元,则发行量就减少册.要该杂志销售收入不少于万元,每册杂志可以定价为( )
A.元 B.元
C.元 D.元
【答案】BC
【解析】依题意可知,要使该杂志销售收入不少于万元,只能提高销售价,
设每册杂志定价为元,则发行量为万册,
则该杂志销售收入为万元,
所以,化简得,解得,故选BC.
10.某公司一年购买某种货物900吨,现分次购买,若每次购买x吨,运费为9万元/次,一年的总储存费用为4x万元,要使一年的总运费与总储存费用之和最小,则下列说法正确的是( )
A.时费用之和有最小值 B.时费用之和有最小值
C.最小值为万元 D.最小值为万元
【答案】BD
【解析】一年购买某种货物900吨,若每次购买x吨,则需要购买次,运费是9万元/次,
一年的总储存费用为万元,
所以一年的总运费与总储存费用之和为,
因为,当且仅当,即时,等号成立,
所以当时,一年的总运费与总储存费用之和最小为万元,故选BD.
11.在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量(单位:千克)与时间(单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是.
A.在前三小时内,每小时的产量逐步增加
B.在前三小时内,每小时的产量逐步减少
C.最后一小时内的产量与第三小时内的产量相同
D.最后两小时内,该车间没有生产该产品
【答案】BD
【解析】由该车间持续5个小时的生产总产量(单位:千克)与时间(单位:小时)的函数图像,得:前3小时的产量逐步减少,故A错,B正确;
后2小时均没有生产,故C错,D正确.
故选BD.
12.甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量(个)与加工时间(分)之间的函数关系,点横坐标为12,点坐标为点横坐标为128.则下面说法中正确的是( )
A.甲每分钟加工的零件数量是5个 B.在60分钟时,甲比乙多加工了120个零件
C.点的横坐标是200 D.的最大值是216
【答案】ACD
【解析】根据题意,甲一共加工的时间为分钟,
一共加工了600个零件,则甲每分钟加工的数量是,所以选项A正确,
设的坐标为,在区间和,20 上,都是乙在加工,则直线和的斜率相等,
则有,在区间和上,甲乙同时加工,同理可得,
则,则有,解可得;即点的坐标是,所以选项C正确;
由题得乙每分钟加工的零件数为个,所以甲每分钟比乙多加工5-3=2个,
在60分钟时,甲比乙多加工了(60-20)个零件,所以选项B错误;
当时,,所以的最大值是216.所以选项D正确.
故选ACD.
三、填空题
13.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.
【答案】2250
【解析】设彩电的原价为a元,∴a(1+40%)·80%-a=270,∴0.12a=270,解得a=2 250.
∴每台彩电的原价为2 250元.故答案为:2250.
14.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润与营运年数为二次函数关系(如图),则客车有营运利润的时间不超过________年.
【答案】7
【解析】设二次函数y=a(x-6)2+11,又过点(4,7),所以a=-1,即y=-(x-6)2+11.
解y≥0,得6-≤x≤6+,
所以有营运利润的时间为2.
又6<2<7,所以有营运利润的时间不超过7年.故答案为:7
15.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.
某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.
【答案】1120
【解析】由题可知:折扣金额y元与购物总金额x元之间的解析式,y
∵y=30>25,∴x>1100,∴0.1(x﹣1100)+25=30,解得,x=1150,
1150﹣30=1120,故此人购物实际所付金额为1120元.
16.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入与店面经营天数的关系是,则总利润最大时店面经营天数是___.
【答案】200
【解析】由题意,时,,
时,;
时,,
天时,总利润最大为10000元,故答案为:200.
17.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
【答案】130. 15.
【解析】(1),顾客一次购买草莓和西瓜各一盒,需要支付元.
(2)设顾客一次购买水果的促销前总价为元,
元时,李明得到的金额为,符合要求.
元时,有恒成立,即,即元.
所以的最大值为.
四、解答题
18.某商店试销一种成本单价为40元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系.设商店获得的利润(利润销售总收入总成本)为元.
(1)试用销售单价表示利润;
(2)试问销售单价定为多少时,该商店可获得最大利润?最大利润是多少?此时的销售量是多少?
【解析】(1)
.
(2),
∴当销售单价为70元/件时,可获得最大利润900元,此时销售量是30件.
19.用洗衣机洗衣时,洗涤并甩干后进入漂洗阶段.每次漂洗都经历放水、漂洗、甩干三个过程.每次漂洗时,衣服的残留物都能均匀溶于水,在甩干时也能被均匀甩出,并且每次甩干后重量(残留物和水分重量总和)不变.假设衣服在洗涤并甩干后,残留物与水分共有千克,其中水分占.
(1)求第一次漂洗后剩余残留物与这次漂洗放入水的重量的函数关系式;
(2)若进行两次漂洗,加入水总重量为千克,求剩余残留物的最小值.
【解析】(1)由题知:,即;
(2)设第一次漂洗后残留物为,第一次加入水量为,第二次加入的水量为
则有,
,即,
,即,
,
当且仅当时,等号成立,故二次漂洗后残留物的最小值为
20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入成本R(x)万元,且,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.
(1)求出2020年的利润W(x)(万元)关于年产量x(千部)的函数关系式,(利润=销售额—成本);
(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
【解析】(1)当时,;
当时,,
.
(2)若,,
当时,万元.
若,,
当且仅当时,即时,万元.
2020年产量为100(千部)时,企业所获利润最大,最大利润是9000万元.
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
中小学教育资源及组卷应用平台
考点12 函数的应用(一)
一、单选题
1.国内快递1 000 g以内的包裹的邮资标准如下表:
运送距离x(km) 0<x≤500 500<x≤1 000 1 000<x≤1 500 …
邮资y(元) 5.00 6.00 7.00 …
如果某人在西安要快递800 g的包裹到距西安1 200 km的某地,那么他应付的邮资是( )
A.5.00元 B.6.00元
C.7.00元 D.8.00元
2.已知等腰三角形的周长为,底边长是腰长的函数,则函数的定义域为( )
A. B. C. D.
3.某厂印刷某图书总成本y(元)与图书日印量x(本)的函数解析式为y=5x+3000,而图书出厂价格为每本10元,则该厂为了不亏本,日印图书至少为( )
A.200本 B.400本 C.600本 D.800本
4.某企业一个月生产某种商品万件时的生产成本为(万元),一万件售价是30万元,若商品能全部卖出,则该企业一个月生产该商品的最大利润为( )
A.139万元 B.149万元 C.159万元 D.169万元
5.把长为12 cm的细铁丝截成两段,各自围成一个正三角形,那么这两个正三角形面积之和的最小值是( )
A. B. C. D.
6.将进货单价为80元的商品按90元一个售出时,能卖出400个,已知这种商品每涨价1元,其销售量就要减少20个,为了获得最大利润,每个商品的售价应定为( )
A.95元 B.100元 C.105元 D.110元
7.已知某旅游城市在过去的一个月内(以30天计),第t天的旅游人数(万人)近似地满足,而人均消费(元)近似地满足.则求该城市旅游日收益的最小值是( )
A.480 B.120 C.441 D.141
8.新冠肺炎疫情防控中,核酸检测是新冠肺炎确诊的有效快捷手段.某医院在成为新冠肺炎核酸检测定点医院并开展检测工作的第天,每个检测对象从接受检测到检测报告生成平均耗时(单位:小时)大致服从的关系为(、为常数).已知第天检测过程平均耗时为小时,第天和第天检测过程平均耗时均为小时,那么可得到第天检测过程平均耗时大致为( )
A.小时 B.小时 C.小时 D.小时
二、多选题
9.某杂志以每册元的价格发行时,发行量为万册.经过调查,若单册价格每提高元,则发行量就减少册.要该杂志销售收入不少于万元,每册杂志可以定价为( )
A.元 B.元
C.元 D.元
10.某公司一年购买某种货物900吨,现分次购买,若每次购买x吨,运费为9万元/次,一年的总储存费用为4x万元,要使一年的总运费与总储存费用之和最小,则下列说法正确的是( )
A.时费用之和有最小值 B.时费用之和有最小值
C.最小值为万元 D.最小值为万元
11.在一次社会实践活动中,某数学调研小组根据车间持续5个小时的生产情况画出了某种产品的总产量(单位:千克)与时间(单位:小时)的函数图像,则以下关于该产品生产状况的正确判断是.
A.在前三小时内,每小时的产量逐步增加
B.在前三小时内,每小时的产量逐步减少
C.最后一小时内的产量与第三小时内的产量相同
D.最后两小时内,该车间没有生产该产品
12.甲乙两人同时各接受了600个零件的加工任务,甲比乙每分钟加工的数量多,两人同时开始加工,加工过程中甲因故障停止一会后又继续按原速加工,直到他们完成任务.如图表示甲比乙多加工的零件数量(个)与加工时间(分)之间的函数关系,点横坐标为12,点坐标为点横坐标为128.则下面说法中正确的是( )
A.甲每分钟加工的零件数量是5个 B.在60分钟时,甲比乙多加工了120个零件
C.点的横坐标是200 D.的最大值是216
三、填空题
13.某商人将彩电先按原价提高40%,然后在广告上写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,则每台彩电的原价为________元.
14.某汽车运输公司购买了一批豪华大客车投入运营.据市场分析,每辆客车营运的利润与营运年数为二次函数关系(如图),则客车有营运利润的时间不超过________年.
15.某建材商场国庆期间搞促销活动,规定:如果顾客选购物品的总金额不超过600元,则不享受任何折扣优惠;如果顾客选购物品的总金额超过600元,则超过600元部分享受一定的折扣优惠,折扣优惠按下表累计计算.
某人在此商场购物获得的折扣优惠金额为30元,则他实际所付金额为____元.
16.某在校大学生提前创业,想开一家服装专卖店,经过预算,店面装修费为10000元,每天需要房租水电等费用100元,受营销方法、经营信誉度等因素的影响,专卖店销售总收入与店面经营天数的关系是,则总利润最大时店面经营天数是___.
17.李明自主创业,在网上经营一家水果店,销售的水果中有草莓、京白梨、西瓜、桃,价格依次为60元/盒、65元/盒、80元/盒、90元/盒.为增加销量,李明对这四种水果进行促销:一次购买水果的总价达到120元,顾客就少付x元.每笔订单顾客网上支付成功后,李明会得到支付款的80%.
①当x=10时,顾客一次购买草莓和西瓜各1盒,需要支付__________元;
②在促销活动中,为保证李明每笔订单得到的金额均不低于促销前总价的七折,则x的最大值为__________.
四、解答题
18.某商店试销一种成本单价为40元/件的新产品,规定试销时的销售单价不低于成本单价,又不高于80元/件,经试销调查,发现销售量(件)与销售单价(元/件)可近似看作一次函数的关系.设商店获得的利润(利润销售总收入总成本)为元.
(1)试用销售单价表示利润;
(2)试问销售单价定为多少时,该商店可获得最大利润?最大利润是多少?此时的销售量是多少?
19.用洗衣机洗衣时,洗涤并甩干后进入漂洗阶段.每次漂洗都经历放水、漂洗、甩干三个过程.每次漂洗时,衣服的残留物都能均匀溶于水,在甩干时也能被均匀甩出,并且每次甩干后重量(残留物和水分重量总和)不变.假设衣服在洗涤并甩干后,残留物与水分共有千克,其中水分占.
(1)求第一次漂洗后剩余残留物与这次漂洗放入水的重量的函数关系式;
(2)若进行两次漂洗,加入水总重量为千克,求剩余残留物的最小值.
20.近年来,中美贸易摩擦不断.特别是美国对我国华为的限制.尽管美国对华为极力封锁,百般刁难,并不断加大对各国的施压,拉拢他们抵制华为5G,然而这并没有让华为却步.华为在2018年不仅净利润创下记录,海外增长同样强劲.今年,我国华为某一企业为了进一步增加市场竞争力,计划在2020年利用新技术生产某款新手机.通过市场分析,生产此款手机全年需投入固定成本250万,每生产x(千部)手机,需另投入成本R(x)万元,且,由市场调研知,每部手机售价0.7万元,且全年内生产的手机当年能全部销售完.
(1)求出2020年的利润W(x)(万元)关于年产量x(千部)的函数关系式,(利润=销售额—成本);
(2)2020年产量为多少(千部)时,企业所获利润最大?最大利润是多少?
21世纪教育网(www.21cnjy.com)
21世纪教育网(www.21cnjy.com)