交大附中高三月考数学试卷
填空题
1.已知集合A={x|-12.计算:lim
3.若复数z满足z=二.(其中i是虚数单位),则|z
4.若线性方程组的增广矩阵为
解为
5.已知inx=-2(x6.在(1+x)+(1+x)2+…+(+x)3的展开式中,x2项的系数是
(用数字作答)
7.若双曲线
1一条渐近线被圆(x-2)2+y2=4所截得的弦长为2,则该双曲线
的实轴长为
x-4x+3,x<0
8.已知f(x)
不等式f(x+a)>f(2a-x)在[a,a+1]上恒成立
2x+3.x>0
则实数a的取值范围是
9.已知点A(1,-1)、B(3,0)、C(2,1),若平面区域M由所有满足AP=AAB+山AC
(1≤A≤2,0≤≤1)的点P组成,则平面区域M的面积为
10.已知等差数列{an}中公差d≠0,a1=1,若a1、a2as成等比数列,且a1、a2、a2
成等比数列,若对任意n∈N,恒有
(m∈N),则
1l.甲、乙两位同学玩过游戏,对于給定的实数a1,按下列方法操作一次产生一个新数
由甲、乙同时各掷一枚均匀的硬币,如果出现两个正面朝上或两个反面朝上,则把a1乘以2
后再减去12;如果出现一个正面朝上,一个反面朝上,则把a1除以2后再加上12,这样就
可得到一个新的实数a2,对实数a2仍按上述方法进行一次操作,又得到一个新的实数a3
当a3>a1时,甲获胜,否则乙获胜,若甲胜的概率为,则a1的取值范围是
12.对于函数f(x)={1
下列5个结论正确的是
f(x-2),x∈(2,+
①任取x,x2∈[D.+∞),都有f(x)-f(x)≤2;
函数y=f(x)在[4,5]上单调递
③f(x)=2/(x+2k)(k∈N)对一切x∈[0,+∞)恒成立
④函数y=f(x)-ln(x-1)有3个零点
⑤若关于x的方程f(x)=m(m<0)有且只有两个不同的实根x,x2,则x1+x2=3
选择题
13.设x>0,则“a=1”是“x+2≥2恒成立”的()条件
A.充分非必要
B.必要非充分
C.充要
D.非充分非必要
14.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体
的三视图,则该几何体的外接球表面积为
D.88丌
15.设O为坐标原点,第一象限内的点M(x,y)的坐标满足约束条件
x-y+2≥0
ON=(a,b)(a>0,b>0),若OM·ON的最大值为40,则+的最小值为()
16.已知实数λ同时满足:①AD=AAB+(1-2)AC,其中D是△ABC边BC延长线上
点:②关于x的方程2sin2x-(A+1)sinx+1=0在[0,2x]上恰有两解,则实数λ的取值
范围是()
A.2<-2√2或A=-2
B.<-4
C.A=-2
D.λ<-4或A=-2√2-1
三.解答题
17.如图,在长方体ABCD-ABCD中,AB=2,AD=1,AA1=1
(1)证明:直线BC1平行于平面DAC;
(2)求直线BC到平面D,AC的距离