4.5.2 用二分法求方程的近似解-学案(Word版)

文档属性

名称 4.5.2 用二分法求方程的近似解-学案(Word版)
格式 docx
文件大小 81.4KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-10-17 21:19:35

图片预览

文档简介

4.5.2 用二分法求方程的近似解-学案
课标要求 素养要求
1.探索用二分法求方程近似解的思路. 2.能借助计算工具用二分法求方程近似解. 通过本节内容的学习,使学生体会“逐步逼进”的方法,提升学生数学抽象、逻辑推理、数学运算素养.
自主梳理
1.二分法
对于在区间[a,b]上图象连续不断且f(a)·f(b)<0的函数y=f(x),通过不断地把它的零点所在区间一分为二,使所得区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法.
2.用二分法求函数f(x)零点近似值的步骤
给定精确度ε,用二分法求函数y=f(x)零点x0的近似值的步骤:
(1)确定零点x0的初始区间[a,b],验证f(a)·f(b)<0;
(2)求区间(a,b)的中点c;
(3)计算f(c),进一步确定零点所在的区间:
①若f(c)=0(此时x0=c),则c就是函数的零点;
②若f(a)·f(c)<0(此时x0∈(a,c)),则令b=c;
③若f(c)·f(b)<0(此时x0∈(c,b)),则令a=c.
(4)判断是否达到精确度ε:若|a-b|<ε,则得到零点近似值a(或b);否则重复(2)~(4).
(1)二分法的依据是零点存在定理,仅适用于函数的变号零点(函数图象通过零点时函数值的符号变号,如求函数f(x)=(x-1)2的零点近似值就不能用二分法).
(2)二分法采用逐步逼近的思想,使函数零点所在的范围逐步缩小,也就是逐渐逼近函数的零点.要根据函数的性质尽可能地找到含有零点的更小的区间,当区间长度小到一定程度时,就得到近似值.   
自主检验
1.思考辨析,判断正误
(1)二分法所求出的方程的解都是近似解.(×)
提示 如函数f(x)=x-2用二分法求出的解就是精确解.
(2)函数f(x)=|x|可以用二分法求零点.(×)
提示 对于函数f(x)=|x|,不存在区间(a,b),使f(a)·f(b)<0,所以不能用二分法求其零点.
(3)用二分法求函数零点的近似值时,每次等分区间后,零点必定在右侧区间内.(×)
提示 函数的零点也可能是区间的中点或在左侧区间内.
2.二分法求函数的零点的近似值适合于(  )
A.零点两侧函数值异号的函数
B.零点两侧函数值同号的函数
C.所有函数都适合
D.所有函数都不适合
答案 A
解析 由函数零点存在定理可知选A.
3.用二分法求函数f(x)的一个正实数零点时,经计算f(0.64)<0,f(0.72)>0,f(0.68)<0,则函数的一个精确度为0.1的正实数零点的近似值为(  )
A.0.9 B.0.7
C.0.5 D.0.4
答案 B
解析 由题意可知函数的零点在(0.68,0.72)内,四个选项中只有0.7,满足|0.7-0.68|<0.1,故选B.
4.下列函数中,有零点但不能用二分法求零点近似值的是(  )
①y=3x2-2x+5;②y=;③y=+1,x∈(-∞,0);④y=x2+4x+8.
A.①③ B.②
C.④ D.②④
答案 C
解析 由y=x2+4x+8知此函数的判别式Δ=0,故无法用二分法求零点近似值.
题型一 二分法概念的理解
【例1】 (1)下列函数中不能用二分法求零点的是(  )
(2)用二分法求方程2x+3x-7=0在区间(1,3)内的根,取区间的中点为x0=2,那么下一个有根的区间是________.
答案 (1)B (2)(1,2)
解析 (1)观察图象与x轴的交点,若交点附近的函数图象连续,且在交点两侧的函数值符号相异,则可用二分法求零点,而B不能用二分法求零点.
(2)设f(x)=2x+3x-7,f(1)=2+3-7<0,f(3)=10>0,f(2)=3>0,f(x)零点所在的区间为(1,2),∴方程2x+3x-7=0有根的区间是(1,2).
思维升华 运用二分法求函数的零点应具备的条件
(1)函数图象在零点附近连续不断.
(2)在该零点左右函数值异号.
只有满足上述两个条件,才可用二分法求函数零点.
【训练1】 已知函数f(x)的图象如图,其中零点的个数与可以用二分法求解的零点个数分别为(  )
A.4,4     B.3,4
C.5,4     D.4,3
答案 D
解析 图象与x轴有4个交点,所以零点的个数为4;左、右函数值异号的有3个零点,所以可以用二分法求解的零点个数为3.
题型二 用二分法求函数的零点
【例2】 用二分法求函数f(x)=x3-x-1在区间[1,1.5]内的一个零点(精确度0.01).
解 经计算,f(1)<0,f(1.5)>0,所以函数在[1,1.5]内存在零点x0.取区间(1,1.5)的中点x1=1.25,经计算f(1.25)<0,因为f(1.25)·f(1.5)<0,所以x0∈(1.25,1.5).
如此继续下去,得到函数的一个零点所在的区间,如下表:
(a,b) (a,b)的中点 中点函数值符号
(1,1.5) 1.25 f(1.25)<0
(1.25,1.5) 1.375 f(1.375)>0
(1.25,1.375) 1.312 5 f(1.312 5)<0
(1.312 5,1.375) 1.343 75 f(1.343 75)>0
(1.312 5,1.343 75) 1.328 125 f(1.328 125)>0
(1.312 5,1.328 125) 1.320 312 5 f(1.320 312 5)<0
因为|1.328 125-1.320 312 5|=0.007 812 5<0.01,所以函数f(x)=x3-x-1的一个精确度为0.01的近似零点可取为1.328 125.
思维升华 用二分法求函数零点的近似值应遵循的原则
(1)需依据图象估计零点所在的初始区间[m,n](一般采用估计值的方法完成).
(2)取区间端点的平均数c,计算f(c),确定有解区间是[m,c]还是[c,n],逐步缩小区间的“长度”,直到区间的两个端点符合精确度要求,终止计算,得到函数零点的近似值.
【训练2】 证明函数f(x)=2x+3x-6在区间(1,2)内有唯一一个零点,并求出这个零点(精确度0.1).
证明 设函数f(x)=2x+3x-6.∵f(1)=-1<0,f(2)=4>0.又∵f(x)是增函数,∴函数f(x)=2x+3x-6在区间(1,2)内有唯一的零点,设该零点为x0,则x0∈(1,2),取x1=1.5,f(1.5)≈1.33>0,f(1)f(1.5)<0,
∴x0∈(1,1.5).
取x2=1.25,f(1.25)≈0.128>0,f(1)·f(1.25)<0,
∴x0∈(1,1.25).
取x3=1.125,f(1.125)≈-0.44<0,f(1.125)·f(1.25)<0,∴x0∈(1.125,1.25).
取x4=1.187 5,f(1.187 5)≈-0.16<0,f(1.187 5)·f(1.25)<0,∴x0∈(1.187 5,1.25).
∵|1.25-1.187 5|=0.062 5<0.1,∴可取x0=1.25,则函数的一个零点可取x0=1.25.
题型三 用二分法求方程的近似解
【例3】 用二分法求方程2x3+3x-3=0的一个正实数近似解(精确度是0.1).
解 令f(x)=2x3+3x-3,
经计算,f(0)=-3<0,
f(1)=2>0,f(0)·f(1)<0,
所以函数f(x)在(0,1)内存在零点,
即方程2x3+3x-3=0在(0,1)内有解.
取(0,1)的中点0.5,经计算f(0.5)<0,
又f(1)>0,
所以方程2x3+3x-3=0在(0.5,1)内有解.
如此继续下去,得到方程的正实数解所在的区间,如下表:
(a,b) 中点c f(a) f(b) f
(0,1) 0.5 f(0)<0 f(1)>0 f(0.5)<0
(0.5,1) 0.75 f(0.5)<0 f(1)>0 f(0.75)>0
(0.5,0.75) 0.625 f(0.5)<0 f(0.75)>0 f(0.625)<0
(0.625,0.75) 0.687 5 f(0.625)<0 f(0.75)>0 f(0.687 5)<0
由于|0.687 5-0.75|=0.062 5<0.1,
所以方程2x3+3x-3=0的一个精确度为0.1的正实数近似解可取为0.75.
思维升华 用二分法求方程的近似解,首先要选好计算的初始区间,这个区间既要包含所求的根,又要使其长度尽量小,其次要依据给定的精确度,及时检验所得区间的长度是否达到要求(达到给定的精确度),以决定是停止计算还是继续计算.
【训练3】 用二分法求2x+x=4在[1,2]内的近似解(精确度为0.2).参考数据:
x 1.125 1.25 1.375 1.5 1.625 1.75 1.875
2x 2.18 2.38 2.59 2.83 3.08 3.36 3.67
解 令f(x)=2x+x-4,则f(1)=2+1-4<0,
f(2)=22+2-4>0.
区间 区间中点值xn f(xn)的值及符号
(1,2) x1=1.5 f(x1)=0.33>0
(1,1.5) x2=1.25 f(x2)=-0.37<0
(1.25,1.5) x3=1.375 f(x3)=-0.035<0
∵|1.375-1.5|=0.125<0.2,
∴2x+x=4在[1,2]内的近似解可取为1.375.
1.二分法就是通过不断地将所选区间一分为二,使区间的两个端点逐步逼近零点,直至找到零点附近足够小的区间,根据所要求的精确度,用此区间的某个数值近似地表示真正的零点.
2.并非所有函数都可以用二分法求其零点,只有满足:
(1)在区间[a,b]上连续不断;
(2)f(a)·f(b)<0.
上述两条的函数,方可采用二分法求得零点的近似值.