第25章 概率初步—2021年中考真题汇编
一.选择题(共15小题)
1.(2021 广州)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )
A. B. C. D.
2.(2021 毕节市)下列说法正确的是( )
A.了解市民知晓“礼让行人”交通新规的情况,适合全面调查
B.一组数据5,5,3,4,1的中位数是3
C.甲、乙两人9次跳高成绩的方差分别为S甲2=1.1,S乙2=2.5,说明乙的成绩比甲稳定
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
3.(2021 泰州)“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则( )
A.P=0 B.0<P<1 C.P=1 D.P>1
4.(2021 哈尔滨)一个不透明的袋子中装有12个小球,其中8个红球、4个黄球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( )
A. B. C. D.
5.(2021 徐州)甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.
糖果袋子 红色 黄色 绿色 总计
甲袋 2颗 2颗 1颗 5颗
乙袋 4颗 2颗 4颗 10颗
若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋( )
A.摸到红色糖果的概率大 B.摸到红色糖果的概率小
C.摸到黄色糖果的概率大 D.摸到黄色糖果的概率小
6.(2021 赤峰)下列说法正确的是( )
A.“清明时节雨纷纷”是必然事件
B.为了了解一批灯管的使用寿命,可以采用普查的方式进行
C.一组数据2,5,4,5,6,7的众数、中位数和平均数都是5
D.甲、乙两组队员身高数据的方差分别为S甲2=0.02,S乙2=0.01,那么乙组队员的身高比较整齐
7.(2021 常州)以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是( )
A. B. C. D.
8.(2021 烟台)连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为( )
A. B. C. D.
9.(2021 雅安)下列说法正确的是( )
A.一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为
B.一个抽奖活动的中奖概率为,则抽奖2次就必有1次中奖
C.统计甲,乙两名同学在若干次检测中的数学成绩发现:=,S甲2>S乙2,说明甲的数学成绩比乙的数学成绩稳定
D.要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式
10.(2021 襄阳)不透明袋子中装有除颜色外完全相同的2个红球和1个白球,从袋子中随机摸出2个球,下列事件是必然事件的是( )
A.摸出的2个球中至少有1个红球
B.摸出的2个球都是白球
C.摸出的2个球中1个红球、1个白球
D.摸出的2个球都是红球
11.(2021 台湾)动物园准备了100张刮刮乐,打算送给开幕当日的前100位游客每人一张,其中可刮中奖品的刮刮乐共有32张,如表为奖品的种类及数量.若小柏为开幕当日的第一位游客,且每张刮刮乐被小柏拿到的机会相等,则小柏刮中玩偶的机率为何?( )
奖品 数量
北极熊玩偶一个 1
狮子玩偶一个 1
造型马克杯一个 10
纪念钥匙圈一个 20
A. B. C. D.
12.(2021 永州)小明计划到永州市体验民俗文化,想从“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化中任意选择两项,则小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为( )
A. B. C. D.
13.(2021 威海)在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为( )
A. B. C. D.
14.(2021 贺州)下列事件中属于必然事件的是( )
A.任意画一个三角形,其内角和是180°
B.打开电视机,正在播放新闻联播
C.随机买一张电影票,座位号是奇数号
D.掷一枚质地均匀的硬币,正面朝上
15.(2021 湖北)下列说法正确的是( )
A.“打开电视机,正在播放《新闻联播》”是必然事件
B.“明天下雨概率为0.5”,是指明天有一半的时间可能下雨
C.一组数据“6,6,7,7,8”的中位数是7,众数也是7
D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是s甲2=0.2,s乙2=0.4,则甲的成绩更稳定
二.填空题(共11小题)
16.(2021 本溪)有5张看上去无差别的卡片,上面分别写着﹣,﹣1,0,,2.从中随机抽取一张,则抽出卡片上写的数是的概率为 .
17.(2021 襄阳)中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“﹣﹣﹣”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“﹣﹣﹣”上方的概率是 .
18.(2021 呼和浩特)动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有 只,现年20岁的这种动物活到25岁的概率是 .
19.(2021 黑龙江)一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是 .
20.(2021 绥化)在单词mathematics(数学)中任意选择一个字母恰好是字母“t”的概率是 .
21.(2021 贺州)盒子里有4张形状、大小、质地完全相同的卡片,上面分别标着数字2,3,4,5.从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为偶数的概率是 .
22.(2021 湖北)不透明的布袋中有红、黄、蓝3种只是颜色不同的钢笔各1支,先从中摸出1支,记录下它的颜色,将它放回布袋并搅匀,再从中随机摸出1支,记录下颜色,那么这两次摸出的钢笔为红色、黄色各一支的概率为 .
23.(2021 贵阳)贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组.有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是 .
24.(2021 通辽)如图所示,电路连接完好,且各元件工作正常.随机闭合开关S1,S2,S3中的两个,能让两个小灯泡同时发光的概率是 .
25.(2021 聊城)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是 .
26.(2021 荆州)有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是 .
三.解答题(共5小题)
27.(2021 朝阳)为了迎接建党100周年,学校举办了“感党恩 跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是 ;
(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率.
28.(2021 锦州)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
29.(2021 西藏)为铸牢中华民族共同体意识,不断巩固民族大团结,红星中学即将举办庆祝建党100周年“中华民族一家亲,同心共筑中国梦”主题活动.学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人只能选择一种方案),将调结果绘制成如下两幅不完整的统计图,请你根据以下两幅图所给的信息解答下列问题.
(1)在抽取的200名学生中,选择“演讲比赛”的人数为 ,在扇形统计图中,m的值为 .
(2)根据本次调查结果,估计全校2000名学生中选择“文艺汇演”的学生大约有多少人?
(3)现从喜爱“知识竞赛”的四名同学a、b、c、d中,任选两名同学参加学校知识竞赛,请用树状图或列表法求出a同学参加的概率.
30.(2021 镇江)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.
31.(2021 兴安盟)一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字﹣2,0.3,,0.
(1)从口袋中随机摸出一个小球,求摸出的小球上的数字是分数的概率(直接写出结果);
(2)从口袋中一次随机摸出两个小球,摸出的小球上的数字分别记作x、y,请用列表法(或树状图)求点(x,y)在第四象限的概率.
第25章 概率初步—2021年中考真题汇编(解析版)
参考答案与试题解析
一.选择题(共15小题)
1.(2021 广州)为了庆祝中国共产党成立100周年,某校举办了党史知识竞赛活动,在获得一等奖的学生中,有3名女学生,1名男学生,则从这4名学生中随机抽取2名学生,恰好抽到2名女学生的概率为( )
A. B. C. D.
【分析】画树状图,共有12种等可能的结果,恰好抽到2名女学生的结果有6种,再由概率公式求解即可.
【解答】解:画树状图如图:
共有12种等可能的结果,恰好抽到2名女学生的结果有6种,
∴恰好抽到2名女学生的概率为=,
故选:B.
【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
2.(2021 毕节市)下列说法正确的是( )
A.了解市民知晓“礼让行人”交通新规的情况,适合全面调查
B.一组数据5,5,3,4,1的中位数是3
C.甲、乙两人9次跳高成绩的方差分别为S甲2=1.1,S乙2=2.5,说明乙的成绩比甲稳定
D.“经过有交通信号灯的路口,遇到红灯”是随机事件
【分析】根据普查与抽样调查的区别、中位数的定义、方差的意义及随机事件的概念逐一判断即可.
【解答】解:A.了解市民知晓“礼让行人”交通新规的情况,由于调查的工作量较大,适合抽样调查,此选项错误,不符合题意;
B.一组数据5,5,3,4,1,重新排列为1、3、4、5、5,其中位数是4,此选项错误,不符合题意;
C.甲、乙两人9次跳高成绩的方差分别为S甲2=1.1,S乙2=2.5,由S甲2<S乙2,说明甲的成绩比乙稳定,此选项错误,不符合题意;
D.“经过有交通信号灯的路口,遇到红灯”,由于事先无法预测遇到哪种灯,所以此事件是随机事件,此选项正确,符合题意;
故选:D.
【点评】本题主要考查随机事件、抽样调查与全面调查、中位数、方差,解题的关键是掌握普查与抽样调查的区别、中位数的定义、方差的意义及随机事件的概念.
3.(2021 泰州)“14人中至少有2人在同一个月过生日”这一事件发生的概率为P,则( )
A.P=0 B.0<P<1 C.P=1 D.P>1
【分析】先确定“14人中至少有2人在同一个月过生日”这一事件为必然事件,即可求解.
【解答】解:“14人中至少有2人在同一个月过生日”这一事件为必然事件,
∴“14人中至少有2人在同一个月过生日”这一事件发生的概率为P=1,
故选:C.
【点评】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.
4.(2021 哈尔滨)一个不透明的袋子中装有12个小球,其中8个红球、4个黄球,这些小球除颜色外无其它差别,从袋子中随机摸出一个小球,则摸出的小球是红球的概率是( )
A. B. C. D.
【分析】用红球的个数除以球的总个数即可.
【解答】解:∵从袋子中随机摸出一个小球共有12种等可能结果,摸出的小球是红球的结果数为8,
∴摸出的小球是红球的概率为=,
故选:D.
【点评】本题主要考查概率公式,解题的关键是掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
5.(2021 徐州)甲、乙两个不透明的袋子中各有三种颜色的糖果若干,这些糖果除颜色外无其他差别.具体情况如下表所示.
糖果袋子 红色 黄色 绿色 总计
甲袋 2颗 2颗 1颗 5颗
乙袋 4颗 2颗 4颗 10颗
若小明从甲、乙两个袋子中各随机摸出一颗糖果,则他从甲袋比从乙袋( )
A.摸到红色糖果的概率大 B.摸到红色糖果的概率小
C.摸到黄色糖果的概率大 D.摸到黄色糖果的概率小
【分析】由概率公式分别求出小明从甲、乙两个袋子中,摸到红色糖果的概率和摸到黄色糖果的概率,即可求解.
【解答】解:小明从甲袋子中随机摸出一颗糖果,摸到红色糖果的概率为,摸到黄色糖果的概率为,
从乙袋子中摸出一颗糖果,摸到红色糖果的概率为=,摸到黄色糖果的概率为=,
∵>,
∴小明从甲袋比从乙袋摸到黄色糖果的概率大,
故选:C.
【点评】本题考查了概率公式,求出小明从甲、乙两个袋子中,摸到红色糖果的概率和摸到黄色糖果的概率是解题的关键.
6.(2021 赤峰)下列说法正确的是( )
A.“清明时节雨纷纷”是必然事件
B.为了了解一批灯管的使用寿命,可以采用普查的方式进行
C.一组数据2,5,4,5,6,7的众数、中位数和平均数都是5
D.甲、乙两组队员身高数据的方差分别为S甲2=0.02,S乙2=0.01,那么乙组队员的身高比较整齐
【分析】根据事件发生的可能性大小,全面调查和抽样调查,众数,中位数,平均数的概念,方差的性质判断即可.
【解答】解:A、“清明时节雨纷纷”是随机事件,本选项说法错误,不符合题意;
B、为了了解一批灯管的使用寿命,应采用抽样调查的方式进行,本选项说法错误,不符合题意;
C、一组数据2,5,4,5,6,7的众数、中位数都是5,平均数=(2+5+4+5+6+7)=,本选项说法错误,不符合题意;
D、甲、乙两组队员身高数据的方差分别为S甲2=0.02,S乙2=0.01,
∵S甲2>S乙2,
∴乙组队员的身高比较整齐,本选项说法正确,符合题意;
故选:D.
【点评】本题考查的是必然事件、不可能事件、随机事件的概念,全面调查和抽样调查,众数和中位数,平均数以及方差的性质,掌握相关的概念和性质是解题的关键.
7.(2021 常州)以下转盘分别被分成2个、4个、5个、6个面积相等的扇形,任意转动这4个转盘各1次.已知某转盘停止转动时,指针落在阴影区域的概率是,则对应的转盘是( )
A. B. C. D.
【分析】首先确定在图中阴影区域的面积在整个面积中占的比例,根据这个比例即可求出指针指向阴影区域的概率.
【解答】解:A.∵圆被等分成2份,其中阴影部分占1份,
∴落在阴影区域的概率为:,故此选项不合题意;
B.∵圆被等分成4份,其中阴影部分占1份,
∴落在阴影区域的概率为:,故此选项不合题意;
C.∵圆被等分成5份,其中阴影部分占2份,
∴落在阴影区域的概率为:,故此选项不合题意;
D.∵圆被等分成6份,其中阴影部分占2份,
∴落在阴影区域的概率为:=,故此选项符合题意;
故选:D.
【点评】本题考查几何概率的求法:首先根据题意将代数关系用面积表示出来,一般用阴影区域表示所求事件(A);然后计算阴影区域的面积在总面积中占的比例,这个比例即事件(A)发生的概率.
8.(2021 烟台)连接正六边形不相邻的两个顶点,并将中间的六边形涂成黑色,制成如图所示的镖盘,将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为( )
A. B. C. D.
【分析】如图,将阴影部分分割成图形中小三角形的大小,令小三角形的面积为a,分别表示出阴影部分的面积和正六边形的面积,根据概率公式求解即可.
【解答】解:如图所示,令S△ABC=a,
则S阴影=6a,S正六边形=18a,
∴将一枚飞镖任意投掷到镖盘上,飞镖落在黑色区域的概率为=,
故选:B.
【点评】本题主要考查几何概率,求概率时,已知和未知与几何有关的就是几何概率.计算方法是长度比,面积比,体积比等.
9.(2021 雅安)下列说法正确的是( )
A.一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为
B.一个抽奖活动的中奖概率为,则抽奖2次就必有1次中奖
C.统计甲,乙两名同学在若干次检测中的数学成绩发现:=,S甲2>S乙2,说明甲的数学成绩比乙的数学成绩稳定
D.要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式
【分析】根据概率的求法、调查方式的选择、方差的意义及概率的意义分别判断后即可确定正确的选项.
【解答】解:A、一个不透明的口袋中有3个白球和2个红球(每个球除颜色外都相同),则从中任意摸出一个球是红球的概率为,故原命题错误,不符合题意;
B、一个抽奖活动的中奖概率为,则抽奖2次可能有1次中奖,也可能不中奖或全中奖,故原命题错误,不符合题意;
C、统计甲,乙两名同学在若干次检测中的数学成绩发现:=,S甲2>S乙2,说明甲的数学成绩不如乙的数学成绩稳定,故原命题错误,不符合题意;
D、要了解一个班有多少同学知道“杂交水稻之父”袁隆平的事迹,宜采用普查的调查方式,正确,符合题意,
故选:D.
【点评】本题用到了概率公式:概率=可能的情况÷总情况;方差代表的是数据的波动程度,对于具体是抽样调查还是普查要看调查的对象的性质,如具有破坏性应该抽样,如意义非常重大的应该采用普查等.
10.(2021 襄阳)不透明袋子中装有除颜色外完全相同的2个红球和1个白球,从袋子中随机摸出2个球,下列事件是必然事件的是( )
A.摸出的2个球中至少有1个红球
B.摸出的2个球都是白球
C.摸出的2个球中1个红球、1个白球
D.摸出的2个球都是红球
【分析】正确理解“必然事件”的定义,即可解答.必然事件是指事件一定会发生,即事件发生的可能性为100%.
【解答】解:A、袋子中装有2个红球和1个白球,摸出的2个球中至少有1个红球,所以A是必然事件,符合题意;
B、袋子中有2个红球1个白球,摸出的2个球都是白球是不可能事件,不符合题意
C、袋子中有2个红球和1个白球,所以摸出的2个球中1个红球,1个白球是随机事件,不符合题意;
D.袋子中有2个红球和1个白球,摸出的2个球都是红球是随机事件,不符合题意.
故选:A.
【点评】本题考查了“必然事件”,正确理解“必然事件”的定义是解题的关键.
11.(2021 台湾)动物园准备了100张刮刮乐,打算送给开幕当日的前100位游客每人一张,其中可刮中奖品的刮刮乐共有32张,如表为奖品的种类及数量.若小柏为开幕当日的第一位游客,且每张刮刮乐被小柏拿到的机会相等,则小柏刮中玩偶的机率为何?( )
奖品 数量
北极熊玩偶一个 1
狮子玩偶一个 1
造型马克杯一个 10
纪念钥匙圈一个 20
A. B. C. D.
【分析】用玩偶的个数除以刮刮乐的总张数即可.
【解答】解:∵共有100张刮刮乐,其中玩偶有2个,
∴小柏刮中玩偶的概率是=.
故选:D.
【点评】本题主要考查了概率公式:P(A)=,n表示该试验中所有可能出现的基本结果的总数目,m表示事件A包含的试验基本结果数,这种定义概率的方法称为概率的定义,难度适中.
12.(2021 永州)小明计划到永州市体验民俗文化,想从“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化中任意选择两项,则小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为( )
A. B. C. D.
【分析】画树状图,共有12种等可能的结果,小明选择体验“瑶族长鼓舞、舜帝祭典”的结果有2种,再由概率公式求解即可.
【解答】解:把“零陵渔鼓、瑶族长鼓舞、东安武术、舜帝祭典”四种民俗文化分别记为:A、B、C、D,
画树状图如图:
共有12种等可能的结果,小明选择体验“瑶族长鼓舞、舜帝祭典”的结果有2种,
∴小明选择体验“瑶族长鼓舞、舜帝祭典”的概率为=,
故选:D.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
13.(2021 威海)在一个不透明的袋子里装有5个小球,每个球上都写有一个数字,分别是1,2,3,4,5,这些小球除数字不同外其它均相同.从中随机一次摸出两个小球,小球上的数字都是奇数的概率为( )
A. B. C. D.
【分析】用列表法表示所有可能出现的结果情况,进而得出两球上的数字都是奇数的概率即可.
【解答】解:用列表法表示所有可能出现的结果情况如下:
共有20种等可能出现的结果情况,其中两球上的数字都是奇数的有6种,
所以从中随机一次摸出两个小球,小球上的数字都是奇数的概率为=,
故选:C.
【点评】本题考查列表法求简单的等可能事件发生的概率,列举出所有可能出现的结果情况是解决问题的关键.
14.(2021 贺州)下列事件中属于必然事件的是( )
A.任意画一个三角形,其内角和是180°
B.打开电视机,正在播放新闻联播
C.随机买一张电影票,座位号是奇数号
D.掷一枚质地均匀的硬币,正面朝上
【分析】根据必然事件的意义,结合具体的问题情境逐项进行判断即可.
【解答】解:A.任意画一个三角形,其内角和是180°,是必然事件,因此选项A符合题意;
B.打开电视机,有可能播放新闻联播,也有可能不是,是个随机事件,因此选项B不符合题意;
C.随机买一张电影票,座位号有可能是奇数号,也有可能是偶数号,是随机事件,因此选项C不符合题意;
D.掷一枚质地均匀的硬币,可能正面朝上,也可能正面朝下,是随机事件,因此选项D不符合题意;
故选:A.
【点评】本题考查随机事件、必然事件,理解必然事件的意义是正确判断的前提,结合问题情境判断事件发生的可能性是正确解答的关键.
15.(2021 湖北)下列说法正确的是( )
A.“打开电视机,正在播放《新闻联播》”是必然事件
B.“明天下雨概率为0.5”,是指明天有一半的时间可能下雨
C.一组数据“6,6,7,7,8”的中位数是7,众数也是7
D.甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是s甲2=0.2,s乙2=0.4,则甲的成绩更稳定
【分析】利用随机事件的定义、概率的意义、中位数及众数的定义、方差的意义分别判断后即可确定正确的选项.
【解答】解:A、“打开电视机,正在播放《新闻联播》”是随机事件,故错误,不符合题意;
B、“明天下雨概率为0.5”,是指明天可能下雨,故错误,不符合题意;
C、一组数据“6,6,7,7,8”的中位数是7,众数是6和7,故错误,不符合题意;
D、甲、乙两人在相同的条件下各射击10次,他们成绩的平均数相同,方差分别是s甲2=0.2,s乙2=0.4,则甲的成绩更稳定,正确,符合题意,
故选:D.
【点评】考查了概率的意义及统计的知识,解题的关键是了解概率是反映事件发生可能性大小的量,难度不大.
二.填空题(共11小题)
16.(2021 本溪)有5张看上去无差别的卡片,上面分别写着﹣,﹣1,0,,2.从中随机抽取一张,则抽出卡片上写的数是的概率为 .
【分析】根据概率公式即可求解.
【解答】解:∵有5张看上去无差别的卡片,上面分别写着﹣,﹣1,0,,2,
∴从中随机抽取一张,抽出卡片上写的数是的概率为1÷5=.
故答案为:.
【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.
17.(2021 襄阳)中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“﹣﹣﹣”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“●”标记,则“馬”随机移动一次,到达的位置在“﹣﹣﹣”上方的概率是 .
【分析】用“﹣﹣﹣”(图中虚线)的上方的黑点个数除以所有黑点的个数即可求得答案.
【解答】解:观察“馬”移动一次能够到达的所有位置,即用“●”标记的有8处,
位于“﹣﹣﹣”(图中虚线)的上方的有2处,
所以“馬”随机移动一次,到达的位置在“﹣﹣﹣”上方的概率是=,
故答案为:.
【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,难度适中.
18.(2021 呼和浩特)动物学家通过大量的调查,估计某种动物活到20岁的概率为0.8,活到25岁的概率为0.5,据此若设刚出生的这种动物共有a只,则20年后存活的有 0.8a 只,现年20岁的这种动物活到25岁的概率是 .
【分析】用概率乘以动物的总只数即可得出20年后存活的数量;先设出所有动物的只数,根据动物活到各年龄阶段的概率求出相应的只数,再根据概率公式解答即可.
【解答】解:若设刚出生的这种动物共有a只,则20年后存活的有0.8a只,
设共有这种动物x只,则活到20岁的只数为0.8x,活到25岁的只数为0.5x,
故现年20岁到这种动物活到25岁的概率为=,
故答案为:0.8a,.
【点评】此题主要考查了概率,用到的知识点为:概率=所求情况数与总情况数之比.
19.(2021 黑龙江)一个不透明的口袋中装有标号为1、2、3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是 .
【分析】用列表法表示所有可能出现的结果情况,进而得出两球上的数字之和是偶数的概率即可.
【解答】解:用列表法表示所有可能出现的结果情况如下:
共有9种等可能出现的结果情况,其中两球上的数字之和为偶数的有5种,
所以从中随机一次摸出两个小球,小球上的数字之和为偶数的概率为,
故答案为:.
【点评】本题考查列表法求简单的等可能事件发生的概率,列举出所有可能出现的结果情况是解决问题的关键.
20.(2021 绥化)在单词mathematics(数学)中任意选择一个字母恰好是字母“t”的概率是 .
【分析】先数出“mathematics”中共多少个字母,让字母“t”的个数除以所有字母的总个数即为所求的概率.
【解答】解:“mathematics”中共11个字母,其中共2个“t”,
任意取出一个字母,有11种情况可能出现,
取到字母“t”的可能性有两种,故其概率是;
故答案为:.
【点评】本题考查概率的求法.用到的知识点为:概率=所求情况数与总情况数之比.
21.(2021 贺州)盒子里有4张形状、大小、质地完全相同的卡片,上面分别标着数字2,3,4,5.从中随机抽出1张后不放回,再随机抽出1张,则两次抽出的卡片上的数字之和为偶数的概率是 .
【分析】画树状图,共有12种等可能的结果,两次抽出的卡片上的数字之和为偶数的结果有4种,再由概率公式求解即可.
【解答】解:画树状图如图:
共有12种等可能的结果,两次抽出的卡片上的数字之和为偶数的结果有4种,
∴两次抽出的卡片上的数字之和为偶数的概率为=,
故答案为:.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
22.(2021 湖北)不透明的布袋中有红、黄、蓝3种只是颜色不同的钢笔各1支,先从中摸出1支,记录下它的颜色,将它放回布袋并搅匀,再从中随机摸出1支,记录下颜色,那么这两次摸出的钢笔为红色、黄色各一支的概率为 .
【分析】画树状图,共有9种等可能的结果,两次摸出的钢笔为红色、黄色各一支的结果有2种,再由概率公式求解即可.
【解答】解:画树状图如图:
共有9种等可能的结果,两次摸出的钢笔为红色、黄色各一支的结果有2种,
∴两次摸出的钢笔为红色、黄色各一支的概率为,
故答案为:.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
23.(2021 贵阳)贵阳市2021年中考物理实验操作技能测试中,要求学生两人一组合作进行,并随机抽签决定分组.有甲、乙、丙、丁四位同学参加测试,则甲、乙两位同学分到同一组的概率是 .
【分析】画树状图,共有12种等可能的结果,甲、乙两位同学分到同一组的结果有2种,再由概率公式求解即可.
【解答】解:画树状图如图:
共有12种等可能的结果,甲、乙两位同学分到同一组的结果有2种,
∴甲、乙两位同学分到同一组的概率为=,
故答案为:.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
24.(2021 通辽)如图所示,电路连接完好,且各元件工作正常.随机闭合开关S1,S2,S3中的两个,能让两个小灯泡同时发光的概率是 .
【分析】画树状图,共有6种等可能的结果,能让两个小灯泡同时发光的结果有2种,再由概率公式求解即可.
【解答】解:把开关S1,S2,S3分别记为A、B、C,
画树状图如图:
共有6种等可能的结果,能让两个小灯泡同时发光的结果有2种,
∴能让两个小灯泡同时发光的概率为=,
故答案为:.
【点评】本题考查的是用列表法或画树状图法求概率.列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
25.(2021 聊城)有四张大小和背面完全相同的不透明卡片,正面分别印有等边三角形、平行四边形、菱形和圆,将这四张卡片背面朝上洗匀,从中随机抽取两张卡片,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率是 .
【分析】画树状图,共有12种等可能的结果,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的结果有2种,再由概率公式求解即可.
【解答】解:等边三角形是轴对称图形,平行四边形是中心对称图形,菱形和圆既是轴对称图形,又是中心对称图形,
把印有等边三角形、平行四边形、菱形和圆的四张卡片分别记为:A、B、C、D,
画树状图如图:
共有12种等可能的结果,所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的结果有2种,
∴所抽取的卡片正面上的图形都既是轴对称图形,又是中心对称图形的概率为=,
故答案为:.
【点评】此题考查了列表法与树状图法以及轴对称图形、中心对称图形等知识;用到的知识点为:概率=所求情况数与总情况数之比.
26.(2021 荆州)有两把不同的锁和四把钥匙,其中两把钥匙分别能打开这两把锁,另外两把钥匙不能打开这两把锁.随机取出一把钥匙开任意一把锁,一次打开锁的概率是 .
【分析】随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数.
【解答】解:由题意得,
共有2×4=8种等可能情况,其中能打开锁的情况有2种,
故一次打开锁的概率为=,
故答案为:.
【点评】本题考查了概率,熟练运用概率公式计算是解题的关键.
三.解答题(共5小题)
27.(2021 朝阳)为了迎接建党100周年,学校举办了“感党恩 跟党走”主题社团活动,小颖喜欢的社团有写作社团、书画社团、演讲社团、舞蹈社团(分别用字母A,B,C,D依次表示这四个社团),并把这四个字母分别写在四张完全相同的不透明的卡片正面,然后将这四张卡片背面朝上洗匀后放在桌面上.
(1)小颖从中随机抽取一张卡片是舞蹈社团D的概率是 ;
(2)小颖先从中随机抽取一张卡片,记录下卡片上的字母不放回,再从剩下的卡片中随机抽取一张卡片,记录下卡片上的字母,请用列表法或画树状图法求出小颖抽取的两张卡片中有一张是演讲社团C的概率.
【分析】(1)共有4种可能出现的结果,其中是舞蹈社团D的有一种,即可求出概率;
(2)用列表法列举出所有可能出现的结果,从中找出一张是演讲社团C的结果数,进而求出概率.
【解答】解:(1)∵共有4种可能出现的结果,其中是舞蹈社团D的有1种,
∴小颖从中随机抽取一张卡片是舞蹈社团D的概率是,
故答案为:;
(2)用列表法表示所有可能出现的结果如下:
共有12种可能出现的结果,每种结果出现的可能性相同,其中有一张是演讲社团C的有6种,
∴小颖抽取的两张卡片中有一张是演讲社团C的概率是=.
【点评】本题考查了用列表法或树状图法求概率,正确画出树状图或表格是解决本题的关键.
28.(2021 锦州)为庆祝建党100周年,某校开展“唱爱国歌曲,扬红船精神”大合唱活动.规律是:将编号为A,B,C的3张卡片(如图所示,卡片除编号和内容外,其他完全相同)背面朝上洗匀后放在桌面上,参加活动的班级从中随机抽取1张,按照卡片上的曲目演唱.
(1)七年一班从3张卡片中随机抽取1张,抽到C卡片的概率为 ;
(2)七年一班从3张卡片中随机抽取1张,记下曲目后放回洗匀,七年二班再从中随机抽取1张,请用列表或画树状图的方法,求这两个班级恰好抽到同一首歌曲的概率.
【分析】(1)直接利用概率公式求解即可;
(2)根据题意先画树状图列出所有等可能结果数的,根据概率公式求解可得.
【解答】解:(1)小明随机抽取1张卡片,抽到卡片编号为C的概率为,
故答案为:;
(2)画树状图如下:
共有9种等可能的结果数,其中两个班级恰好选择一首歌曲的有3种结果,
所以两个班级恰好抽到同一首歌曲的概率为=.
【点评】本题考查的是用列表法或画树状图法求概率与古典概率的求解方法.列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合于两步完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.
29.(2021 西藏)为铸牢中华民族共同体意识,不断巩固民族大团结,红星中学即将举办庆祝建党100周年“中华民族一家亲,同心共筑中国梦”主题活动.学校拟定了演讲比赛、文艺汇演、书画展览、知识竞赛四种活动方案,为了解学生对活动方案的喜爱情况,学校随机抽取了200名学生进行调查(每人只能选择一种方案),将调结果绘制成如下两幅不完整的统计图,请你根据以下两幅图所给的信息解答下列问题.
(1)在抽取的200名学生中,选择“演讲比赛”的人数为 40人 ,在扇形统计图中,m的值为 30 .
(2)根据本次调查结果,估计全校2000名学生中选择“文艺汇演”的学生大约有多少人?
(3)现从喜爱“知识竞赛”的四名同学a、b、c、d中,任选两名同学参加学校知识竞赛,请用树状图或列表法求出a同学参加的概率.
【分析】(1)总人数乘以A对应的百分比即可求出其人数,再根据四种方案的人数之和等于总人数求出C方案人数,再用C方案人数除以总人数即可得出m的值;
(2)总人数乘以样本中B方案人数所占比例;
(3)列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.
【解答】解:(1)在抽取的200名学生中,选择“演讲比赛”的人数为200×20%=40(人),
则选择“书画展览”的人数为200﹣(40+80+20)=60(人),
∴在扇形统计图中,m%=×100%=30%,即m=30,
故答案为:40人,30;
(2)估计全校2000名学生中选择“文艺汇演”的学生大约有2000×=800(人);
(3)列表如下:
a b c d
a (b,a) (c,a) (d,a)
b (a,b) (c,b) (d,b)
c (a,c) (b,c) (d,c)
d (a,d) (b,d) (c,d)
由表可知,共有12种等可能结果,其中a同学参加的有6种结果,
所以a同学参加的概率为=.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.
30.(2021 镇江)甲、乙、丙三人各自随机选择到A,B两个献血站进行爱心献血.求这三人在同一个献血站献血的概率.
【分析】首先根据题意画树状图,然后根据树状图即可求得所有等可能的结果和满足条件的结果数,再根据概率公式求解即可.
【解答】解:画树状图得:
共8种等可能情况,其中这三人在同一个献血站献血的有2种结果,
所以这三人在同一个献血站献血的概率为=.
【点评】此题考查了树状图法求概率.注意树状图法适合两步或两步以上完成的事件,树状图法可以不重不漏的表示出所有等可能的结果,用到的知识点为:概率=所求情况数与总情况数之比.
31.(2021 兴安盟)一个不透明的口袋中装有四个完全相同的小球,上面分别标有数字﹣2,0.3,,0.
(1)从口袋中随机摸出一个小球,求摸出的小球上的数字是分数的概率(直接写出结果);
(2)从口袋中一次随机摸出两个小球,摸出的小球上的数字分别记作x、y,请用列表法(或树状图)求点(x,y)在第四象限的概率.
【分析】(1)用分数的个数除以数字的总个数即可得出答案;
(2)列表得出所有等可能结果,从中找到点(x,y)在第四象限的结果数,再根据概率公式求解即可.
【解答】解:(1)P(分数)==;
(2)列表得;
﹣2 0.3 0
﹣2 (0.3,﹣2) (,﹣2) (0,﹣2)
0.3 (﹣2,0.3) (,0.3) (0,0.3)
(﹣2,) (0.3,) (0,)
0 (﹣2,0) (0.3,0) (,0)
共出现12种等可能结果,其中点在第四象限的有2种(0.3,﹣2)、(0.3,),
∴P(第四象限)=.
【点评】本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.