2021-2022学年湘教版七年级数学上册《2.5整式的加减》解答题专题训练(附答案)
1.已知多项式M=(2x2+3xy+2y)﹣2(x2+x+yx+1).
(1)当x=1,y=2,求M的值;
(2)若多项式M与字母x的取值无关,求y的值.
2.计算:
(1)3(a+b)﹣(3a﹣2b);
(2)xy2﹣[x+(6y+2xy2)﹣3x].
3.已知M=2x2﹣2xy+y2,N=3x2+xy﹣2y2,求2M﹣3N.
4.化简与求值:已知A=4x2+5y,B=﹣3x2﹣2y,求2A﹣B的值.其中x=2,y=1.
5.已知多项式M=(2x2+3xy+2y)﹣2(x2﹣x+yx﹣).
(1)先化简,再求值,其中x=,y=﹣1;
(2)若多项式M与字母x的取值无关,求y的值.
6.(1)计算:(﹣1)8﹣(﹣+)÷(﹣)﹣|﹣0.52|;
(2)化简:2(x2﹣xy)﹣(2x2﹣3xy)﹣2[x2﹣(2x2﹣xy)].
7.印卷时,工人不小心把一道化简题前面一个数字遮住了,结果变成:■.
(1)某同学辨认后把“■”猜成10,请你帮他算算化简后该式是多少;
(2)老师说:“你猜错了,我看到该题目遮挡部分是单项式的系数和次数之积.”遮挡部分是多少?
(3)若化简结果是一个常数,请算算遮挡部分又该是多少?
8.化简:
(1)5(3a2b﹣ab2)﹣4(﹣ab2+3a2b);
(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn].
9.已知关于x的整式A、B,其中A=3x2+(m﹣1)x+1,B=nx2+3x+2m.
(1)若当A+2B中不含x的二次项和一次项时,求m+n的值;
(2)当n=3时,A=B﹣2m+7,求此时使x为正整数时,正整数m的值.
10.已知A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+2.
(1)化简:4A﹣(3A﹣2B);
(2)若(1)中式子的值与a的取值无关,求b的值.
11.某同学做一道数学题,已知两个多项式A、B,B=3x2y﹣5xy+x+7,试求A+B.这位同学把A+B误看成A﹣B,结果求出的答案为6x2y+12xy﹣2x﹣9
(1)请你替这位同学求出A+B的正确答案;
(2)当x取任意数值,A﹣3B的值是一个定值时,求y的值.
12.先化简,再求值:3(a2﹣2ab)﹣[a2﹣3b+3(ab+b)],其中a=﹣3,.
13.先化简,再求值:3a2b+2(ab﹣a2b)﹣[2ab2﹣(3ab2﹣ab)],其中a=2,b=﹣.
14.已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.
(1)化简2A﹣3B.
(2)当x+y=,xy=﹣1,求2A﹣3B的值.
15.先化简,再求值:2xy﹣[(5xy﹣16x2y2)﹣2(xy﹣4x2y2)],其中x=﹣,y=4.
16.先化简,再求值:(3x2﹣2xy)﹣[x2﹣2(x2﹣xy)],其中,x=﹣,y=2.
17.先化简再求值:,其中.
18.化简、求值:
(1)先化简、再求值:(a+6a2)+3(a﹣2a2),其中a=1;
(2)化简:已知A=a2﹣2ab+b2,B=a2+2ab+b2,求(B﹣A).
19.“整体思想”是中学数学解题中的一种重要思想,它在多项式的化简与求值中应用极为广泛,例如把(a+b)看成一个整体:3(a+b)+2(a+b)=(3+2)(a+b)=5(a+b),请应用整体思想解答下列问题:
(1)化简:3(x+y)2﹣5(x+y)2+7(x+y)2;
(2)已知a﹣2b=2,2b﹣c=﹣5,c﹣d=9,求(a﹣c)+(2b﹣d)﹣(2b﹣c)的值.
20.先化简,再求值:若多项式x2﹣2mx+3与x2+2x﹣1的差与x的取值无关,求多项式4mn﹣[3m﹣2m2﹣6(mnn2)]的值.
21.先化简,再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy],其中x=3,y=﹣.
22.已知:代数式A=4x2+3xy﹣2y,B=﹣3x2+9xy+6y.
当x=,y=﹣1时,求2A﹣B的值.
23.已知A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy.
(1)化简2A﹣3B;
(2)当x+y=,xy=﹣1,求2A﹣3B的值;
(3)若2A﹣3B的值与y的取值无关,求2A﹣3B的值.
参考答案
1.解:(1)M=2x2+3xy+2y﹣2x2﹣2x﹣2yx﹣2
=xy﹣2x+2y﹣2,
当x=1,y=2时,
原式=2﹣2+4﹣2=2;
(2)∵M=xy﹣2x+2y﹣2=(y﹣2)x+2y﹣2,且M与字母x的取值无关,
∴y﹣2=0,
解得:y=2.
2.解:(1)原式=3a+3b﹣3a+2b
=5b.
(2)原式=xy2﹣(x+3y+xy2﹣3x)
=xy2﹣(3y+xy2﹣2x)
=xy2﹣3y﹣xy2+2x
=2x﹣3y.
3.解:原式=2(2x2﹣2xy+y2)﹣3(3x2+xy﹣2y2)
=4x2﹣4xy+2y2﹣9x2﹣3xy+6y2
=﹣5x2﹣7xy+8y2.
4.解:∵A=4x2+5y,B=﹣3x2﹣2y,
∴2A﹣B=2(4x2+5y)﹣(﹣3x2﹣2y)=8x2+10y+3x2+2y=11x2+12y;
当x=2,y=1时,原式=11×22+12×1=44+12=56.
5.解:(1)M=2x2+3xy+2y﹣2x2+2x﹣2yx+1
=xy+2x+2y+1,
当x=,y=﹣1时,原式=﹣+﹣2+1=﹣;
(2)∵M=xy+2x+2y+1=(y+2)x+2y+1,且M与字母x的取值无关,
∴y+2=0,
解得:y=﹣2.
6.解:(1)原式=1﹣()×(﹣6)﹣|﹣|
=1﹣[]﹣
=1﹣[﹣3﹣(﹣4)+(﹣1)]﹣
=1﹣0﹣
=;
(2)原式=2x2﹣2xy﹣2x2+3xy﹣2[x2﹣2x2+xy]
=2x2﹣2xy﹣2x2+3xy﹣2(﹣x2+xy)
=2x2﹣2xy﹣2x2+3xy+2x2﹣2xy
=2x2﹣xy.
7.解:(1)根据题意得:原式=10x2y﹣(5xy2+xy﹣3x2y﹣xy)+5xy2
=10x2y﹣5xy2﹣xy+3x2y+xy+5xy2
=13x2y;
(2)是单项式的系数和次数之积为:﹣×3=﹣4,
答:遮挡部分应是﹣4;
(3)设遮挡部分为a,
原式=ax2y﹣5xy2+3x2y+5xy2=ax2y+3x2y=(a+3)x2y,
因为结果为常数,
所以遮挡部分为﹣3.
8.解:(1)原式=15a2b﹣5ab2+4ab2﹣12a2b
=3a2b﹣ab2;
(2)原式=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn
=mn.
9.解:(1)∵A=3x2+(m﹣1)x+1,B=nx2+3x+2m,
∴A+2B=3x2+(m﹣1)x+1+2(nx2+3x+2m)
=3x2+(m﹣1)x+1+2nx2+6x+4m
=(3+2n)x2+(m+5)x+4m+1,
∵A+2B中不含x的二次项和一次项,
∴3+2n=0,m+5=0,
∴n=﹣,m=﹣5,
∴m+n=﹣5﹣=﹣6.5;
(2)∵A=B﹣2m+7,且n=3,
∴3x2+(m﹣1)x+1=3x2+3x+2m﹣2m+7,
(m﹣1)x+1=3x+7,
解得:x=,
∵m和x都为正整数,
∴m﹣4是6的约数,
∴m﹣4=1,2,3,6,
∴m=5,6,7,10.
10.解:(1)4A﹣(3A﹣2B)
=A+2B,
将A=2a2+3ab﹣2a﹣1,B=﹣a2+ab+2,代入上式,
原式=2a2+3ab﹣2a﹣1+2(﹣a2+ab+2)
=2a2+3ab﹣2a﹣1﹣2a2+2ab+4
=5ab﹣2a+3.
(2)∵5ab﹣2a+3=a(5b﹣2)+3,
若(1)中式子的值与a的取值无关,则5b﹣2=0.
∴.
11.解(1)∵B=3x2y﹣5xy+x+7,A﹣B=6x2y+12xy﹣2x﹣9,
∴A+B=(A﹣B)+2B
=6x2y+12xy﹣2x﹣9+2(3x2y﹣5xy+x+7)
=6x2y+12xy﹣2x﹣9+6x2y﹣10xy+2x+14
=12x2y+2xy+5;
(2)A﹣3B=A+B﹣4B
=12x2y+2xy+5﹣4(3x2y﹣5xy+x+7)
=12x2y+2xy+5﹣12x2y+20xy﹣4x﹣28
=22xy﹣4x﹣23
=(22y﹣4)x﹣23.
∵当x取任意数值,A﹣3B的值是一个定值,
∴22y﹣4=0,
∴y=.
12.解:原式=(3a2﹣6ab)﹣[a2﹣3b+(3ab+3b)]
=3a2﹣6ab﹣(a2﹣3b+3ab+3b)
=3a2﹣6ab﹣a2+3b﹣3ab﹣3b
=2a2﹣9ab,
当a=﹣3,b=时,原式=2×(﹣3)2﹣9×(﹣3)×=18+9=27.
13.解:原式=3a2b+2ab﹣3a2b﹣(2ab2﹣3ab2+ab)
=3a2b+2ab﹣3a2b﹣2ab2+3ab2﹣ab
=ab2+ab,
当a=2,b=﹣时,
原式=2×(﹣)2+2×(﹣)
=2×﹣1
=﹣1
=﹣.
14.解:(1)2A﹣3B
=2(3x2﹣x+2y﹣4xy)﹣3(2x2﹣3x﹣y+xy)
=6x2﹣2x+4y﹣8xy﹣6x2+9x+3y﹣3xy
=7x+7y﹣11xy,
(2)∵x+y=,xy=﹣1,
∴2A﹣3B=7x+7y﹣11xy=7(x+y)﹣11xy=7×﹣﹣11×(﹣1)=6+11=17.
15.解:原式===
当,y=4时,原式=.
16.解:原式=(3x2﹣2xy)﹣(x2﹣2x2+2xy)
=3x2﹣2xy﹣x2+2x2﹣2xy
=4x2﹣4xy;
当x=﹣,y=2时,
原式=4×(﹣)2﹣4×(﹣)×2
=1+4
=5.
17.解:﹣2(a﹣b2)﹣(a﹣b2)
=﹣2a+b2﹣a+b2
=﹣a+2b2,
当a=﹣2,b=时,
原式=﹣×(﹣2)+2×()2=7+=.
18.解:(1)原式=a+6a2+3a﹣6a2
=4a,
当a=1时,
原式=4.
(2)原式=(a2+2ab+b2﹣a2+2ab﹣b2)
=×4ab
=ab.
19.解:(1)3(x+y)2﹣5(x+y)2+7(x+y)2
=5(x+y)2;
(2)∵a﹣2b=2,2b﹣c=﹣5,c﹣d=9,
∴a﹣2b+2b﹣c=a﹣c=2﹣5=﹣3,2b﹣c+c﹣d=2b﹣d=﹣5+9=4,
∴(a﹣c)+(2b﹣d)﹣(2b﹣c)=﹣3+4﹣(﹣5)=6.
20.解:∵多项式x2﹣2mx+3与x2+2x﹣1的差与x的取值无关,
∴x2﹣2mx+3﹣(x2+2x﹣1)
=x2﹣2mx+3﹣x2﹣2x+1
=(1﹣n)x2+(﹣2﹣2m)x+4,
∴1﹣n=0,﹣2﹣2m=0,
解得:n=3,m=﹣1,
4mn﹣[3m﹣2m2﹣6(mnn2)]
=4mn﹣3m+2m2+6(mnn2)
=4mn﹣3m+2m2+3m﹣4mn+n2
=2m2+n2,
当n=3,m=﹣1时,
原式=2×(﹣1)2+32
=2+9
=11.
21.解:原式=3x2y﹣[2xy2﹣2xy+3x2y+xy]
=3x2y﹣2xy2+2xy﹣3x2y﹣xy
=﹣2xy2+xy,
当x=3,y=﹣时,
原式=﹣2×3()2+3×(﹣)
=﹣﹣1
=﹣.
22.解:∵A=4x2+3xy﹣2y,B=﹣3x2+9xy+6y,
∴2A﹣B=2(4x2+3xy﹣2y)﹣(﹣3x2+9xy+6y)
=8x2+6xy﹣4y+x2﹣3xy﹣2y
=9x2+3xy﹣6y,
当x=,y=﹣1时,原式=9×﹣3××1﹣6×(﹣1)=1﹣1+6=6.
23.解:(1)∵A=3x2﹣x+2y﹣4xy,B=2x2﹣3x﹣y+xy,
∴2A﹣3B
=2(3x2﹣x+2y﹣4xy)﹣3(2x2﹣3x﹣y+xy)
=6x2﹣2x+4y﹣8xy﹣6x2+9x+3y﹣3xy
=7x+7y﹣11xy;
(2)当x+y=,xy=﹣1时,
2A﹣3B=7x+7y﹣11xy
=7(x+y)﹣11xy
=7×﹣11×(﹣1)
=6+11
=17;
(3)∵2A﹣3B=7x+7y﹣11xy
=7x+(7﹣11x)y,
∴若2A﹣3B的值与y的取值无关,则7﹣11x=0,
∴x=,
∴2A﹣3B
=7×+0
=.