6.2 一次函数 同步练习(含答案)

文档属性

名称 6.2 一次函数 同步练习(含答案)
格式 docx
文件大小 1.3MB
资源类型 试卷
版本资源 鲁教版
科目 数学
更新时间 2021-10-19 08:56:39

图片预览

文档简介

中小学教育资源及组卷应用平台
第六章 一次函数
2 一次函数
知识能力全练
知识点一 一次函数的概念
1.下列函数的表达式中,是一次函数的是( )
A.y= B.y=x-1 C.y=x2 D.y=2
2.函数y=(a-2021)x-4是一次函数,则a的取值范围是____________.
3.定义:[a,b,c]为函数y=ax2+bx+c(a,b,c为实数)的“关联数”.若“关联数”为[m-2,m,1]的函数为一次函数,则m的值为____________.
4.某人购进一批香蕉,到集贸市场零售.已知卖出的香蕉数量x(千克)与销售额y(元)的关系如下表所示:
数量x(千克) 1 2 3 4 5
销售额y(元) 4+0.1 8+0.2 12+0.3 16+0.4 20+0.5
求y与x的函数关系式,并指出y是不是x的一次函数.
5.某产品生产车间有10名工人.已知每名工人每天可生产甲种产品12个或乙种产品10个,且每生产一个甲种产品可获得利润100元,每生产一个乙种产品可获得利润180元.设该车间每天安排x名工人生产甲种产品,其余工人生产乙种产品.
(1)请写出此车间每天获取的利润y(元)与x(名)之间的函数关系式;
(2)若要使此车间每天获取利润14400元,则应安排多少名工人生产甲种产品?
知识点二 正比例函数的概念
6.下列问题中,两个变量之间成正比例函数关系的是( )
A.正方形面积S与边长a之间的关系
B.等腰三角形的周长为16cm,底边长y(cm)与腰长x(cm)之间的关系
C.铅笔每支2元,购买铅笔的总价y(元)与购买支数n之间的关系
D.小明进行100m短跑训练,跑完全程所需时间t(s)与速度v(m/s)之间的关系
7.如果函数y=(m-)x+m2-1是正比例函数,那么m=____________.
8.已知A、B两地相距30km,小明以6km/h的速度从A地步行到B地,记小明步行的距离为ykm,步行的时间为xh,则y与x之间的函数表达式为_____________,y是x的____________函数,自变量的取值范围是______________.
9.当m,n为何值时,y=(m-3)x|m|-2+n-2满足下列条件:
(1)是一次函数?
(2)是正比例函数?
巩固提高全练
10.下列关系式中,一次函数是( )
A.y= B.y=x2+3 C.y=k+b(k、b是常数) D.y=3x
11.已知函数y=是正比例函数,则m的值是( )
A.2 B.-2 C.±2 D.
12.函数y=2x+b是正比例函数,则b=__________.
13.下列函数中,正比例函数是( )
A.y=-8x B.y= C.y=8x2 D.y=8x-4
14.已知A、B两地相距3千米,小黄从A地到B地,平均速度为4千米/时,若用x表示行走的时间(小时),y表示余下的路程(千米),则y关于x的函数解析式是( )
A.y=4x(x≥0) B.y=4-3() C.y=3-4x(x≥0) D.y=3-4x(0≤x≤)
15.根据记录,从地面向上11km以内,每升高1km,气温降低6℃;又知道在距地面11km以上的高空,气温几乎不变.若地面气温为m(℃),设距地面的高度为x(km)处的气温为y(℃).
(1)写出距地面的高度在11km以内的y与x之间的函数表达式;
(2)上周日,小敏在乘飞机从上海飞回西安途中,某一时刻,她从机舱内屏幕显示的相关数据得知,飞机外气温为-26℃时,飞机距地面的高度为7km,求当时这架飞机下方地面的气温;小敏想,假如飞机当时在距地面12km的高空,飞机外的气温是多少呢?请求出假如当时飞机距地面12km时,飞机外的气温.
16.如图所示,在△ABC中,∠C=90°,AC=6,BC=8,点P为BC上的一动点,且P点不与B点、C点重合,设CP=x,S△APB=y,求y与x之间的函数关系式,并求出自变量x的取值范围.
17.某移动通讯公司开设了两种通讯业务:1.全球通:用户先交50元月租费,然后每通话1分钟付费0.4元(市内通话);2.快捷通:用户不交月租费,每通话1分钟,付话费0.6元(市内通话).按一个月通话x分钟计算,两种方式的话费分别为P元,Q元.
(1)请你写出P,Q与x之间的关系;
(2)某用户一个月的通话时间为120分钟,你认为选择何种通讯业务较合适?
参考答案
1.B 2. a≠2021 3. 2
4.解析 ∵x=1时,y=4+0.1;x=2时,y=2x(4+0.1);x=3时,y=3x(4+0.1) , ∴y=(4+0.1)x=4. 1x.
∴y是x的一次函数.
5.解析 (1)根据题意,得y= 12x×100+ 10×( 10-x)×180=-600x+18000.
(2)当y=14400时,有14400=-600x+18000,解得x=6.
故应安排6名工人生产甲种产品.
6.C 7. - 8. y=6x;正比例;0≤x≤5
9.解析 (1)由|m|-2=1得m=±3,
∵m-3≠0,∴m≠3,
:.当m=-3,n为任意实数时,y=(m-3)x|m|-2+n-2是一次函数.
(2)由|m|-2=1得m=±3,
∵m-3≠0,n-2=0. ∴m≠3,n=2,
∴当m=-3,n=2时,y=(m-3)x|m|-2+n-2是正比例函数.
10.D 11.A 12. 0 13.A 14.D
15.解析 (1)∵从地面向上11 km以内,每升高1km,气温降低6℃,地面气温为m(℃),距地面的高度为x(km)处的气温为y(℃),
∴y与x之间的函数表达式为y=m-6x(0sx<11).
(2)将x=7,y=-26代入y=m-6x,得-26=m-42,
∴m=16,∴当时地面气温为16 ℃.
∵x=12>11 ,∴y=16-6×11=-50(℃),
即假如当时飞机距地面12 km,飞机外的气温为-50 ℃.
16.解析 因为BC=8, CP=x,所以PB=8-x,所以S△APB=PB·AC,
即y=×(8-x)×6=24-3x(0<x<8).
17.解析 (1)P=50+0.4x,Q=0.6x.
(2)当x=120时, P=50+0.4x= 50+0.4×120=98,Q=0.6x=0.6×120= 72,
∵98>72, 即 P>Q,
∴该用户一个月的通话时间为120分钟,选择快捷通较合适.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
21世纪教育网(www.21cnjy.com)