2021-2022学年青岛版八年级数学上册《2.5角平分线的性质》同步达标训练(附答案)
一.选择题
1.到三角形的三边距离相等的点是( )
A.三角形三条高的交点 B.三角形三条内角平分线的交点
C.三角形三条中线的交点 D.三角形三条边的垂直平分线的交点
2.如图,在四边形ABCD中,∠A=90°,AD=6,连接BD,BD⊥CD,∠ADB=∠C.若P是BC边上一动点,则DP长的最小值为( )
A.4 B.6 C.3 D.12
3.如图,在△ABC中,∠C=90°,AD平分∠BAC交BC于点D,DE⊥AB于点E,则下列结论:①AD平分∠CDE;②∠BAC=∠BDE;③DE平分∠ADB;④若AC=4BE,则S△ABC=8S△BDE.其中正确的有( )
A.1个 B.2个 C.3个 D.4个
4.小明同学在学习了全等三角形的相关知识后发现,只用两把完全相同的长方形直尺就可以作出一个角的平分线.
如图:一把直尺压住射线OB,另一把直尺压住射线OA并且与第一把直尺交于点P,小明说:“射线OP就是∠BOA的角平分线.”他这样做的依据是( )
A.角的内部到角的两边的距离相等的点在角的平分线上
B.角平分线上的点到这个角两边的距离相等
C.三角形三条角平分线的交点到三条边的距离相等
D.以上均不正确
5.如图,已知△ABC的周长是18cm,∠ABC和∠ACB的角平分线交于点O,OD⊥BC于点D,若OD=3cm,则△ABC的面积是( )cm2.
A.24 B.27 C.30 D.33
6.如图,P是△ABC的三条角平分线的交点,连接PA、PB、PC,若△PAB、△PBC、△PAC的面积分别为S1、S2、S3,则S1( )S2+S3.
A.> B.= C.< D.无法确定
7.三角形中,到三边距离相等的点是( )
A.三条高线的交点 B.三条中线的交点
C.三条角平分线的交点 D.三边垂直平分线的交点
8.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线交BC于点D,CD=2,Q为AB上一动点,则DQ的最小值为( )
A.2 B.2 C. D.
9.如图,OC是∠AOB的平分线,P是OC上一点,PD⊥OA于点D,PD=6,则点P到边OB的距离为( )
A.5 B.6 C.3 D.4
10.如图,在△ABC中,高AD和BE交于点H,且∠1=∠2=22.5°,下列结论:①∠1=∠3;②BD+DH=AB;③2AH=BH;④若DF⊥BE于点F,则AE﹣FH=DF.其中正确的结论是( )
A.①②③ B.③④ C.①②④ D.①②③④
二.填空题
11.如图,四边形ABCD中,AB⊥AD,点E是BC边的中点,DA平分对角线BD与CD边延长线的夹角,若BD=5,CD=7,则AE= .
12.如图,已知△ABC的周长是22,OB、OC分别平分∠ABC和∠ACB,OD⊥BC于D,且OD=3,△ABC的面积是 .
13.如图,在△ABC中,∠ABC=110°,∠ACB=40°,CE是∠ACB的角平分线,D是AC上一点,若∠CBD=40°,则∠CED= .
14.如图,AD是△ABC的平分线,DF⊥AB于点F,DE=DG,AG=16,AE=8,若S△ADG=64,则△DEF的面积为 .
15.如图,AD是△ABC中∠BAC的角平分线,DE⊥AB于点E,DF⊥AC于点F,S△ABC=7,DE=2,AB=4,则AC长是 .
16.如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点,若PA=2,则PQ范围是 .
17.如图,已知△ABC的周长是20,OB,OC分别平分∠ABC和∠ACB,OD⊥BC于点D,且OD=2,△ABC的面积是 .
18.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M、N,再分别以点M、N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=3,AB=10,则△ABD的面积是 .
19.如图,点P是∠AOB平分线OC上一点,PD⊥OB,垂足为D,若PD=2,则点P到边OA的距离是 .
20.如图,在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,若∠A=70°,则∠BOC= .
三.解答题
21.已知:在△ABC中,∠ABC=60°,∠ACB=40°,BD平分∠ABC,CD平分∠ACB,
(1)如图1,求∠BDC的度数;
(2)如图2,连接AD,作DE⊥AB,DE=2,AC=4,求△ADC的面积.
22.如图,已知OC平分∠AOB,P是OC上任意一点,PD∥OA交OB于点D,PE⊥OA于点E,∠OPE=75°,如果PE=6cm,求OD的长.
23.已知:如图,△ABC的角平分线BE、CF相交于点P.求证:点P在∠A的平分线上.
24.如图,在△ABC中,D是BC的中点,DE⊥AB,DF⊥AC,垂足分别是E,F,BE=CF.求证:AD是△ABC的角平分线.
25.探索实践:如图,OC是∠AOB的角平分线;
(1)请你在OC上任意找一点P,作PD⊥OA、PE⊥OB,垂足分别为D,E.度量比较PD与PE的长短,得 ;
(2)在OC上另取一点Q,同样作QF⊥OA、QG⊥OB,垂足分别为F,G.再比较QF、QG的长短,得 ;
(3)你可以在角平分线OC上再取其它一些点试试,从中你发现了什么?用你自己的语言叙述. .
26.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.
27.已知:如图,P是OC上一点,PD⊥OA于D,PE⊥OB于E,F、G分别是OA、OB上的点,且PF=PG,DF=EG.
求证:OC是∠AOB的平分线.
参考答案
1.解:到三角形的三边距离相等的点是:三角形三条内角平分线的交点.
故选:B.
2.解:∵BD⊥CD,
∴∠BDC=90°,
∴∠C+∠CBD=90°,
∵∠A=90°
∴∠ABD+∠ADB=90°,
∵∠ADB=∠C,
∴∠ABD=∠CBD,
当DP⊥BC时,DP的长度最小,
∵AD⊥AB,
∴DP=AD,
∵AD=6,
∴DP的最小值是6,
故选:B.
3.解:∵AD平分∠BAC,
∴∠DAC=∠DAE,
∵∠C=90°,DE⊥AB,
∴∠C=∠DEA=90°,
∵AD=AD,
∴△DAC≌△DAE(AAS),
∴∠CDA=∠EDA,
∴①AD平分∠CDE正确;
无法证明∠BDE=60°,
∴③DE平分∠ADB错误;
∵BE+AE=AB,AE=AC,
∵AC=4BE,
∴AB=5BE,AE=4BE,
∴S△ADB=5S△BDE,S△ADC=4S△BDE,
∴S△ABC=9S△BDE,
∴④错误;
∵∠BDE=90°﹣∠B,∠BAC=90°﹣∠B,
∴∠BDE=∠BAC,
∴②∠BAC=∠BDE正确.
故选:B.
4.解:如图所示:过两把直尺的交点P作PE⊥AO,PF⊥BO,
∵两把完全相同的长方形直尺,
∴PE=PF,
∴OP平分∠AOB(角的内部到角的两边的距离相等的点在这个角的平分线上),
故选:A.
5.解:过O点作OE⊥AB于E,OF⊥AC于F,连接OA,如图,
∵OB平分∠ABC,OD⊥BC,OE⊥AB,
∴OE=OD=3,
同理可得OF=OD=3,
∴S△ABC=S△OAB+S△OBC+S△OAC
=×OE×AB+×OD×BC+×OF×AC
=(AB+BC+AC),
∵△ABC的周长是18,
∴S△ABC=×18=27(cm2).
故选:B.
6.解:过P点作PD⊥AB于D,PE⊥AC于E,PF⊥BC于F,如图,
∵P是△ABC的三条角平分线的交点,
∴PD=PE=PF,
∵S1= AB PD,S2= BC PF,S3= AC PE,
∴S2+S3= (AC+BC) PD,
∵AB<AC+BC,
∴S1<S2+S3.
故选:C.
7.解:三角形中,到三边距离相等的点是三条角平分线的交点.
故选:C.
8.解:作DH⊥AB于H,如图,
∵AD平分∠BAC,DH⊥AB,DC⊥AC,
∴DH=DC=2,
∵Q为AB上一动点,
∴DQ的最小值为DH的长,即DQ的最小值为2.
故选:A.
9.解:如图,过点P作PE⊥OB于E,
∵OC是∠AOB的平分线,PD⊥OA,
∴PE=PD=6,
∴点P到边OB的距离为6.
故选:B.
10.解:①∵∠1=∠2=22.5°,
又∵AD是高,
∴∠2+∠C=∠3+∠C,
∴∠1=∠3,
②∵∠1=∠2=22.5°,
∴∠ABD=∠BAD,
∴AD=BD,
又∵∠2=∠3,∠ADB=∠ADC,
∴△BDH≌△ADC,
∴DH=CD,
∵AB=BC,
∴BD+DH=AB,
③无法证明,
④可以证明,
故选:C.
11.解:方法一,如图,
取BD中点H,连AH、EH,
∵AB⊥AD,
∴AH=DH=BH=BD=2.5,
∴∠HDA=∠HAD,
∵DA平分∠FDB,
∴∠FDA=∠HDA,
∴∠FDA=∠HAD,
∴AH∥DF,
∵点E是BC边的中点,点H是BD的中点,
∴EH∥CD,EH=CD=3.5,
∴A、H、E三点共线,
∴AE=AH+EH=2.5+3.5=6.
方法二,如图,延长BA和CD交于一点G,
证明三角形BDA和三角形GDA全等,
得A是BG中点,
则AE是中位线,
AE等于CG的一半
故答案为:6.
12.解:如图,连接OA,
∵OB、OC分别平分∠ABC和∠ACB,
∴点O到AB、AC、BC的距离都相等,
∵△ABC的周长是22,OD⊥BC于D,且OD=3,
∴S△ABC=×22×3=33.
故答案为:33.
13.解:∠A=180°﹣∠ACB﹣∠ABC=180°﹣110°﹣40°=30°,
∵作EN⊥BD,EM⊥BC,EH⊥AC,垂足分别是N、M、H,∠ABC=110°,∠CBD=40°,
∴∠ABD=70°,
∴∠ABC的外角是∠ABM=180°﹣110°=70°;
∴BE是∠DBM的角平分线,
∴EM=EN,
∵CE是∠ACB的平分线,EM⊥CB,EH⊥AC,
∴EM=EH,
∴EH=EN,
∴DE是∠ADB的平分线,
∵∠ADB=180°﹣∠A﹣∠ABD=180°﹣30°﹣70°=80°,
∴∠ADE=∠ADB=40°=∠ACB,
∴DE∥CB,
∴∠CED=∠ECB=20°
故答案为:20°.
14.解:过D点作DH⊥AC于H,如图,
∵S△ADG=64,
∴×AG×DH=64,
∴DH==8,
∵AD是△ABC的平分线,DF⊥AB,DH⊥AC,
∵DF=DH=8,
在Rt△DEF和Rt△DGH中,
,
∴Rt△DEF≌Rt△DGH(HL),
∴EF=HG,
同理可得Rt△ADF≌Rt△ADH,
∴AF=AH,
∵EF=AF﹣AE=AH﹣AE=AG﹣HG﹣AE=16﹣EF﹣8,
∴EF=4,
∴S△DEF=×EF×DF=×4×8=16.
故答案为16.
15.解:∵AD是△ABC中∠BAC的角平分线,DE⊥AB,DF⊥AC,
∴DE=DF,
∴S△ABC=×4×2+AC 2=7,
解得AC=3.
故答案为:3.
16.解:∵OP平分∠MON,PA⊥ON于点A,PA=2,
∴点P到OM的距离等于2,
而点Q是射线OM上的一个动点,
∴PQ≥2.
故答案为PQ≥2.
17.解:如图,连接OA,过O作OE⊥AB于E,OF⊥AC于F,
∵OB、OC分别平分∠ABC和∠ACB,
∴OE=OF=OD=2,
∵△ABC的周长是20,OD⊥BC于D,且OD=2,
∴S△ABC=×AB×OE+×BC×OD+×AC×OF
=×(AB+BC+AC)×2
=×20×2
=20,
故答案为:20.
18.解:如图,作DE⊥AB于E,
由基本尺规作图可知,AD是△ABC的角平分线,
∵∠C=90°,DE⊥AB,
∴DE=DC=3,
∴△ABD的面积=×AB×DE=×10×3=15,
故答案为:15.
19.解:过P作PE⊥OA于点E,
∵点P是∠AOB平分线OC上一点,PD⊥OB,
∴PE=PD,
∵PD=2,
∴PE=2,
∴点P到边OA的距离是2.
故答案为2.
20.解:∵在△ABC中,点O是△ABC内一点,且点O到△ABC三边的距离相等,
∴O为△ABC的三内角平分线的交点,
∴∠OBC=∠ABC,∠OCB=∠ACB,
∵∠A=70°,
∴∠ABC+∠ACB=180°﹣∠A=110°,
∴∠OBC+∠OCB=55°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=125°,
故答案为:125°.
21.解:(1)∵BD平分∠ABC,
∴∠DBC=∠ABC=×60°=30°,
∵CD平分∠ACB,
∴∠DCB=∠ACB=×40°=20°,
∴∠BDC=180°﹣∠DBC﹣∠DCB
=180°﹣30°﹣20°
=130°;
(2)作DF⊥AC于F,DH⊥BC于H,如图2,
∵BD平分∠ABC,DE⊥AB,DH⊥BC,
∴DH=DE=2,
∵CD平分∠ACB,DF⊥AC,DH⊥BC,
∴DF=DH=2,
∴△ADC的面积=DF AC=×2×4=4.
22.解:如图,过点P作PF⊥OB于点F,
∵OC平分∠AOB,PE⊥OA,
∴PF=PE=6cm,
∵PE⊥OA,∠OPE=75°,
∴Rt△POE中,∠POE=15°,
∵OC平分∠AOB,
∴∠AOB=30°,
∵PD∥OA,
∴∠PDF=∠AOB=30°,∠DPO=∠EOP=15°=∠DOP,
∴PD=2PF=12cm,DO=DP,
∴OD=12cm.
23.证明:如图,过点P作PD⊥AB、PM⊥BC、PN⊥AC垂足分别为D、M、N,
∵BE平分∠ABC,点P在BE上,
∴PD=PM,
同理,PM=PN,
∴PD=PN,
∴点P在∠A的平分线上.
24.证明:∵DE⊥AB,DF⊥AC,
∴Rt△BDE和Rt△CDF是直角三角形.
,
∴Rt△BDE≌Rt△CDF(HL),
∴DE=DF,
∵DE⊥AB,DF⊥AC,AD=AD,
∴Rt△ADE≌Rt△ADF(HL),
∴∠ADE=∠ADF,
∴AD是角平分线.
25.解:(1)由题意得OP=OP,∵OC是∠AOB的角平分线
∴∠POD=∠POE,
又∵∠OPE=∠OPD=90°
∴△POD≌△POE(ASA)
∴PD=PE.
(2)OQ为公共边,又∵OC是∠AOB的角平分线
∴∠FOQ=∠GOQ,又∵∠OFQ=∠OGQ=90°
∴△QOF≌△QOG(ASA)
∴QF=QG.
(3)由(1)(2)的结论可知角平分线上的点到角两边的距离相等.
26.解:PC与PD相等.理由如下:
过点P作PE⊥OA于点E,PF⊥OB于点F.
∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,
∴PE=PF(角平分线上的点到角两边的距离相等)
又∵∠AOB=90°,∠PEO=∠PFO=90°,
∴四边形OEPF为矩形,
∴∠EPF=90°,
∴∠EPC+∠CPF=90°,
又∵∠CPD=90°,
∴∠CPF+∠FPD=90°,
∴∠EPC=∠FPD=90°﹣∠CPF.
在△PCE与△PDF中,
∵,
∴△PCE≌△PDF(ASA),
∴PC=PD.
27.证明:在Rt△PFD和Rt△PGE中,,
∴Rt△PFD≌Rt△PGE(HL),
∴PD=PE,
∵P是OC上一点,PD⊥OA,PE⊥OB,
∴OC是∠AOB的平分线.