(共26张PPT)
2021
3.2 勾股定理的逆定理
八年级上册
复习回顾
1
B
C
A
问题1 勾股定理的内容是什么
直角三角形的直角边的平方和等于斜边的平方,如图,Rt△ABC三边关系有a2+b2=c2.
b
c
a
问题2 求以线段a、b为直角边的直角三角形的斜边c的长:
① a=3,b=4;
② a=7,b=24;
③ a=5,b=12.
c=5
c=25
c=13
思考 以前我们已经学过了通过角的关系来确定直角三角形,可不可以通过边来确定直角三角形呢?
复习引入
教学新知
2
巴比伦时期美索不达米亚有丰富的粘土资源,学生们以手掌大小的粘土板为练习本.只要粘土板还潮湿,就可以擦掉上面原有的计算,开始新的计算,干了的粘土板被扔掉或是被用做建筑材料,后来人们就是在这些建筑中发现的“普林顿332泥板”。
泥板上的神秘符号,实际上是一些数组,经过专家的潜心研究,发现其中两列数字竟然是直角三角形的勾和弦的长,运用勾股定理算得另一条直角边的长也是整数。
同学们你们知道古埃及人用什么方法得到直角的吗
(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(13)
(12)
(11)
(10)
(9)
打13个等距的结,把一根绳子分成等长的12段,然后以3段,4段,5段的长度为边长,用木桩钉成一个三角形,其中一个角便是直角.
情景引入
讲授新课
勾股定理的逆定理
一
下面有三组数分别是一个三角形的三边长a, b, c:
①5,12,13; ②7,24,25; ③8,15,17.
问题 分别以每组数为三边长作出三角形,用量角器量一量,它们都是直角三角形吗?
是
下面有三组数分别是一个三角形的三边长a, b, c:
①5,12,13; ②7,24,25; ③8,15,17.
问题2 这三组数在数量关系上有什么相同点?
① 5,12,13满足52+122=132,
② 7,24,25满足72+242=252,
③ 8,15,17满足82+152=172.
问题3 古埃及人用来画直角的三边满足这个等式吗?
∵32+42=52,∴满足.
a2+b2=c2
我觉得这个猜想不准确,因为测量结果可能有误差.
我也觉得猜想不严谨,前面我们只取了几组数据,不能由部分代表整体.
问题3 据此你有什么猜想呢
由上面几个例子,我们猜想:
命题2 如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形是直角三角形.
△ABC≌ △ A′B′C′
?
∠C是直角
△ABC是直角三角形
A
B
C
a
b
c
已知:如图,△ABC的三边长a,b,c,满足a2+b2=c2.
求证:△ABC是直角三角形.
构造两直角边分别为a,b的Rt△A′B′C′
证一证:
证明:作Rt△A′B′C′,使∠C′=90°,A′C′=b,B′C′= a,
∴△ABC ≌ △A′B′C′ (SSS),
∴∠C = ∠C′= 90° 即△ABC是直角三角形.
则
A
C
a
B
b
c
勾股定理的逆定理:
如果三角形的三边长a 、b 、c满足
a2+b2=c2
那么这个三角形是直角三角形.
A
C
B
a
b
c
勾股定理的逆定理是直角三角形的判定定理,即已知三角形的三边长,且满足两条较小边的平方和等于最长边的平方,即可判断此三角形为直角三角形 ,最长边所对应的角为直角.
特别说明:
归纳总结
例1 下面以a,b,c为边长的三角形是不是直角三角形?如果是,那么哪一个角是直角?
(1) a=15 , b=8 ,c=17;
解:(1)∵152+82=289,172=289,∴152+82=172,
根据勾股定理的逆定理,这个三角形是直角三角形,且∠C是直角.
(2) a=13 ,b=14 ,c=15.
(2)∵132+142=365,152=225,
∴132+142≠152,不符合勾股定理的逆定理,
∴这个三角形不是直角三角形.
根据勾股定理的逆定理,判断一个三角形是不是直角三角形,只要看两条较小边长的平方和是否等于最大边长的平方.
归纳
【变式题1】若△ABC的三边a,b,c满足 a:b: c=3:4:5,是判断△ABC的形状.
解:设a=3k,b=4k,c=5k(k>0),
∵(3k)2+(4k)2=25k2,(5k)2=25k2,
∴(3k)2+(4k)2=(5k)2,
∴△ABC是直角三角形,且∠C是直角.
已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.
归纳
常见勾股数:
3,4,5; 5,12,13; 6,8,10; 7,24,25; 8,15,17; 9,40,41; 10,24,26等等.
勾股数拓展性质:
一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数.
常见勾股数记忆顺口溜:
勾3股4弦5 3 4 5
5月12记一生(13) 5 12 13
连续偶数6,8,10 6 8 10
8月15在一起(17) 8 15 17
课堂练习
3
1.下列各组线段中,能构成直角三角形的是( )
A.2,3,4 B.3,4,6
C.5,12,13 D.4,6,7
C
2.一个三角形的三边的长分别是3,4,5,则这个三角形最长边上的高是 ( )
A.4 B.3 C.2.5 D.2.4
D
3.若△ABC的三边a、b、c满足(a-b)(a2+b2-c2)=0,则△ABC是_______________________.
等腰三角形或直角三角形
4.下列各组数是勾股数的是 ( )
A.3,4,7 B.5,12,13
C.1.5,2,2.5 D.1,3,5
5.将直角三角形的三边长扩大同样的倍数,则得到的三角形 ( )
A.是直角三角形 B.可能是锐角三角形
C.可能是钝角三角形 D.不可能是直角三角形
B
A
勾股数的性质:一组勾股数,都扩大相同倍数k(k为正整数),得到一组新数,这组数同样是勾股数。
4、若△ABC的三边a,b,c满足 a:b: c=3:4:5,是判断△ABC的形状.
解:设a=3k,b=4k,c=5k(k>0),
∵(3k)2+(4k)2=25k2,(5k)2=25k2,
∴(3k)2+(4k)2=(5k)2,
∴△ABC是直角三角形,且∠C是直角.
已知三角形三边的比例关系判断三角形形状:先设出参数,表示出三条边的长,再用勾股定理的逆定理判断其是否是直角三角形.如果此直角三角形的三边中有两个相同的数,那么该三角形还是等腰三角形.
课堂小结
4
勾股定理
的逆定理
内容
作用
从三边数量关系判定一个三角形是否是直角形三角形.
如果三角形的三边长a 、b 、c满足a2+b2=c2,那么这个三角形是直角三角形.
注意
最长边不一定是c,∠C 也不一定是直角.
勾股数一定是正整数
拓展提升
5
1.若△ABC的三边 a,b,c 满足a2+b2+c2+50=6a+8b+10c. 试判断△ABC的形状.
解:∵ a2+b2+c2+50=6a+8b+10c,
∴ a2-6a+9+b2-8b+16+c2-10c+25=0.
即 (a-3) + (b-4) + (c-5) =0.
∴ a=3, b=4, c=5
即 a2+b2=c2
∴△ABC是直角三角形.
2.已知△ABC,AB=n -1,BC=2n,AC=n +1(n为大于1的正整数).(1)试问△ABC是直角三角形吗?
(2)若是,哪一条边所对的角是直角?请说明理由.
解:∵AB +BC = (n -1) +(2n)
= n4 -2n +1+4n
= n4 +2n +1
= (n +1)
= AC ,
∴△ABC直角三角形,边AC所对的角是直角.
3.如图,在正方形ABCD中,AB=4,AE=2,DF=1,图中有几个直角三角形,你是如何判断的?与你的同伴交流.
D
A
B
C
E
F
解:由题意可知△ABE,△DEF,△FCB均为直角三角形.
由勾股定理,知
BE2 = 22 + 42 = 20,
EF2 = 22 + 12 = 5,
BF2 = 32 + 42 = 25,
∴BE2 + EF2 = BF2.
∴ △BEF是直角三角形.