(共18张PPT)
3.1 勾股定理
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
5米
B
A
C
12米
一、情景引入
电线杆折断之前的高度=BC+AB=5米+AB的长
图甲 图乙
A的面积
B的面积
C的面积
4
4
8
A
B
C
SA+SB=SC
C
图甲
1.观察图甲,小方格
的边长为1.
⑴正方形A、B、C的
面积各为多少?
⑵正方形A、B、C的
面积有什么关系?
A
B
C
C
图乙
2.观察图乙,小方格
的边长为1.
⑴正方形A、B、C的
面积各为多少?
9
16
25
SA+SB=SC
⑵正方形A、B、C的
面积有什么关系?
4
4
8
A
B
C
SA+SB=SC
图甲
图甲 图乙
A的面积
B的面积
C的面积
A
B
C
图乙
2.观察图乙,小方格
的边长为1.
9
16
25
SA+SB=SC
⑵正方形A、B、C的
面积有什么关系?
4
4
8
A
B
C
SA+SB=SC
图甲
图甲 图乙
A的面积
B的面积
C的面积
a
b
c
a
b
c
A
B
C
C
图乙
SA+SB=SC
SA+SB=SC
图甲
a
b
c
a
b
c
3.猜想a、b、c 之间的关系?
a2 +b2 =c2
勾股定理(毕达哥拉斯定理)
(gou-gu theorem)
如果直角三角形两直角边分别为a, b,斜边为c,那么
即直角三角形两直角边的平方和等于
斜边的平方.
a
c
勾
弦
b
股
两千多年前,古希腊有个哥拉
斯学派,他们首先发现了勾股定理,因此
在国外人们通常称勾股定理为毕达哥拉斯
年希腊曾经发行了一枚纪念票.
定理.为了纪念毕达哥拉斯学派,1955
勾 股 世 界
国家之一.早在三千多年前,
国家之一.早在三千多年前,
国家之一.早在三千多年前,
国家之一.早在三千多年前,
国家之一.早在三千多年前,
国家之一.早在三千多年前,
国家之一.早在三千多年前,
国家之一.早在三千多年前
两千多年前,古希腊有个毕达哥拉斯学派,他们首先发现了勾股定理,因此在国外人们通常称勾股定理为毕达哥拉斯定理.为了纪念毕达哥拉斯学派,1955年希腊曾经发行了一枚纪念邮票.
我国是最早了解勾股定理的国家之一.早在三千多年前,周朝数学家商高就提出,将一根直尺折成一个直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被记载于我国古代著名的数学著作《周髀算经》中.
邮票赏析
这是1955年希腊曾经发行的纪念一位数学家的邮票.
2002年世界数学家大会会标
在中国古代,人们把弯曲成直角的手臂的上半部分称为“勾”,下半部分称为 “股”.我国古代学者把直角三角形较短的直角边称为“勾”,较长的直角边称为“股”,斜边称为“弦”.
勾
股
勾
股
弦
勾股定理:
勾股史话
如图,一根电线杆在离地面5米处断裂,电线杆顶部落在离电线杆底部12米处,电线杆折断之前有多高?
∴电线杆折断之前的高度
=BC+AB=5米+13米=18米
5米
B
A
C
12米
解:∵BC⊥AC,
∴在Rt△ABC中,
AC=12,BC=5,
根据勾股定理,
1.求下列图中表示边的未知数x、y、z的值.
①
81
144
x
y
z
②
③
做一做
625
576
144
169
比一比看看谁算得快!
2.求下列直角三角形中未知边的长:
可用勾股定理建立方程.
方法小结:
8
x
17
16
20
x
12
5
x
做一做
1、如图,一个高3 米,宽4 米的大门,需在相对角的顶点间加一个加固木条,则木条的长为( )
A.3米 B.4米 C.5米 D.6米
C
3
4
2、湖的两端有A、B两点,从与BA方向成直角的BC方向上的点C测得CA=130米,CB=120米,则AB为( )
A
B
C
A.50米 B.120米 C.100米 D.130米
130
120
?
A
3、在波平如静的湖面上,有一朵美丽的红莲 ,它高出水面1米 ,一阵大风吹过,红莲被吹至一边,花朵齐及水面,如果知道红莲移动的水平距离为2米 ,问这里水深多少?
x+1
B
C
A
H
1
2
?
┓
x
x2+22=(x+1)2
盛开的水莲
谢 谢