3-7考点聚焦7:几何初步(2) 教师版课件+学生版试卷 (14张PPT)

文档属性

名称 3-7考点聚焦7:几何初步(2) 教师版课件+学生版试卷 (14张PPT)
格式 zip
文件大小 3.3MB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2021-10-22 17:33:51

文档简介

(共14张PPT)第四单元考点聚焦:几何初步(2)
1.(南山)如图所示,AB为一条直线,OC是∠AOD的平分线.
(1)如图1,若∠COE为直角,且∠AOD=60°,求∠BOE的度数;
(2)如图2,若∠DOE:∠BOD=2:5,且∠COE=80°,求∠EOB的度数.
2.(罗湖)如图,以点O为端点按顺时针方向依次作射线OA、OB、OC、OD.
(1)若∠AOC、∠BOD都是直角,∠BOC=60°,求∠AOB和∠DOC的度数.
(2)若∠BOD=100°,∠AOC=110°,且∠AOD=∠BOC+70°,求∠COD的度数.
(3)若∠AOC=∠BOD=α,当α为多少度时,∠AOD和∠BOC互余?并说明理由.
3.(宝安)我们知道,从一个角的顶点出发把这个角分成两个相等的角的射线,叫做这个角的平分线.类似的我们给出一些新的概念:从一个角的顶点出发把这个角分成度数为1:2的两个角的射线,叫做这个角的三分线:从一个角的顶点出发把这个角分成度数为1:3的两个角的射线,叫做这个角的四分线…
显然,一个角的三分线、四分线都有两条.
例如:如图1,若∠BOC=2∠AOB,则OB是∠AOC的一条三分线;若∠AOD=2∠COD,则OD是∠AOC的另一条三分线.
(1)如图2,OB是∠AOC的三分线,∠BOC>∠AOB,若∠AOC=60°,则∠AOB=   ;
(2)如图3,∠DOF=120°,OE是∠DOF的四分线,∠DOE>∠EOF,过点O作射线OG,当OG刚好为∠DOE的三分线时,求∠GOF的度数;
(3)如图4,∠AOD=120°,射线OB、OC是∠AOD的两条四分线,将∠BOC绕点O沿顺时针方向旋转α°(0≤α≤180),在旋转的过程中,若射线OB、OC、OD中恰好有一条射线是其它两条射线组成夹角的四分线,请直接写出a的值.
4.(龙岗)如图1,点O为直线AB上点,过点O作射线OC,使∠BOC=50°.现将一直角三角板的直角顶点放在点O处,一边OD与射线OB重合,如图2.
(1)∠EOC=   ;
(2)如图3,将三角板DOE绕点O逆时针旋转一定角度,此时OC是∠EOB的角平分线,求∠BOD的度数;
(3)将三角板DOE绕点O逆时针旋转,在OE与OA重合前,是否有某个时刻满足∠DOC=∠AOE,求此时∠BOD的度数.
参考答案
1.(南山)
2.(罗湖)
3.(宝安)
4.(龙岗)