新课标高一数学同步测试—2.4幂函数
一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的,请把正确答案的代号填在题后的括号内(每小题5分,共50分).
1.下列函数中既是偶函数又是 ( )
A. B. C. D.
2.函数在区间上的最大值是 ( )
A. B. C. D.
3.下列所给出的函数中,是幂函数的是 ( )
A. B. C. D.
4.函数的图象是 ( )
A. B. C. D.
5.下列命题中正确的是 ( )
A.当时函数的图象是一条直线
B.幂函数的图象都经过(0,0)和(1,1)点
C.若幂函数是奇函数,则是定义域上的增函数
D.幂函数的图象不可能出现在第四象限
6.函数和图象满足 ( )
A.关于原点对称 B.关于轴对称
C.关于轴对称 D.关于直线对称
7. 函数,满足 ( )
A.是奇函数又是减函数 B.是偶函数又是增函数
C.是奇函数又是增函数 D.是偶函数又是减函数
8.函数的单调递减区间是 ( )
A. B. C. D.
9. 如图1—9所示,幂函数在第一象限的图象,
比较的大小( )
A.
B.
C.
D.
10. 对于幂函数,若,则
,大小关系是( )
A. B.
C. D. 无法确定
二、填空题:请把答案填在题中横线上(每小题6分,共24分).
11.函数的定义域是 .
12.的解析式是 .
13.是偶函数,且在是减函数,则整数的值是 .
14.幂函数图象在一、二象限,不过原点,则的奇偶性为 .
三、解答题:解答应写出文字说明.证明过程或演算步骤(共76分) .
15.(12分)比较下列各组中两个值大小
(1)
16.(12分)已知幂函数 轴对称,试确定的解析式.
17.(12分)求证:函数在R上为奇函数且为增函数.
18.(12分)下面六个幂函数的图象如图所示,试建立函数与图象之间的对应关系.
(A) (B) (C) (D) (E) (F)
19.(14分)由于对某种商品开始收税,使其定价比原定价上涨x成(即上涨率为),涨价后,商品卖出个数减少bx成,税率是新定价的a成,这里a,b均为正常数,且a<10,设售货款扣除税款后,剩余y元,要使y最大,求x的值.
20.(14分)利用幂函数图象,画出下列函数的图象(写清步骤).
(1).
参考答案(8)
一、CCBAD DCADA
二、11. ; 12.; 13.5; 14.为奇数,是偶数;
三、15. 解:(1)
(2)函数上增函数且
16. 解:由
17.解: 显然,奇函数;
令,则,
其中,显然,
=,由于,,
且不能同时为0,否则,故.
从而. 所以该函数为增函数.
18.解:六个幂函数的定义域,奇偶性,单调性如下:
(1)定义域[0,,既不是奇函数也不是偶函数,在[0,是增函数;
通过上面分析,可以得出(1)(A),(2)(F),(3)(E),(4)(C),(5)(D),(6)(B).
19.解:设原定价A元,卖出B个,则现在定价为A(1+),
现在卖出个数为B(1-),现在售货金额为A(1+) B(1-)=AB(1+)(1-),
应交税款为AB(1+)(1-)·,
剩余款为y= AB(1+)(1-)= AB,
所以时y最大 要使y最大,x的值为.
20.解:(1)把函数的图象向左平移1个单位,
再向上平移1个单位可以得到函数的图象.
(2)的图象可以由图象向右平移2个单位,再向下平移
1个单位而得到.图象略《幂函数》教学设计
一、设计构思
1、设计理念
注重发展学生的创新意识。学生的数学学习活动不应只限于接受、记忆、模仿和练习,倡导学生积极主动探索、动手实践与相互合作交流的数学学习方式。这种方式有助于发挥学生学习主动性,使学生的学习过程成为在教师引导下的“再创造”过程。我们应积极创设条件,让学生体验数学发现和创造的历程,发展他们的创新意识。
注重提高学生数学思维能力。课堂教学是促进学生数学思维能力发展的主阵地。问题解决是培养学生思维能力的主要途径。所设计的问题应有利于学生主动地进行观察、实验、猜测、验证、推理与交流等教学活动。内容的呈现应采用不同的表达方式,以满足多样化的学习需求。伴随新的问题发现和问题解决后成功感的满足,由此刺激学生非认知深层系统的良性运行,使其产生“乐学”的余味,学生学习的积极性与主动性在教学中便自发生成。本节主要安排应用类比法进行探讨,加深学生对类比法的体会与应用。
注重学生多层次的发展。在问题解决的探究过程中应体现“以人为本”,充分体现“人人学有价值的数学,人人都能获得必需的数学”,“不同的人在数学上得到不同的发展”的教学理念。有意义的数学学习必须建立在学生的主观愿望和知识经验基础之上,而学生的基础知识和学习能力是多层次的,所以设计的问题也应有层次性,使各层次学生都得到发展。
注重信息技术与数学课程的整合。高中数学课程应尽量使用科学型计算器,各种数学教育技术平台,加强数学教学与信息技术的结合,鼓励学生运用计算机、计算器等进行探索和发现。
另外,在数学教学中,强调数学本质的同时,也让学生通过适度的形式化,较好的理解和使用数学概念、性质。
2、教材分析
幂函数是江苏教育出版社普通高中课程标准实验教科书数学(必修1)第二章第四节的内容。该教学内容在人教版试验修订本(必修)中已被删去。标准将该内容重新提出,正是考虑到幂函数在实际生活的应用。故在教学过程及后继学习过程中,应能够让学生体会其实际应用。《标准》将幂函数限定为五个具体函数,通过研究它们来了解幂函数的性质。其中,学生在初中已经学习了y=x、y=x2、y=x-1等三个简单的幂函数,对它们的图象和性质已经有了一定的感性认识。现在明确提出幂函数的概念,有助于学生形成完整的知识结构。学生已经了解了函数的基本概念、性质和图象,研究了两个特殊函数:指数函数和对数函数,对研究函数已经有了基本思路和方法。因此,教材安排学习幂函数,除内容本身外,掌握研究函数的一般思想方法是另一目的,另外应让学生了解利用信息技术来探索函数图象及性质是一个重要途径。该内容安排一课时。
3、教学目标的确定
鉴于上述对教材的分析和新课程的理念确定如下教学目标:
⑴掌握幂函数的形式特征,掌握具体幂函数的图象和性质。
⑵能应用幂函数的图象和性质解决有关简单问题。
⑶加深学生对研究函数性质的基本方法和流程的经验。
⑷培养学生观察、分析、归纳能力。了解类比法在研究问题中的作用。
⑸渗透辨证唯物主义观点和方法论,培养学生运用具体问题具体分析的方法分析问题、解决问题的能力。
4、教学方法和教具的选择
基于对课程理念的理解和对教材的分析,运用问题情境可以使学生较快的进入数学知识情景,使学生对数学知识结构作主动性的扩展,通过问题的导引,学生对数学问题探究,进行数学建构,并能运用数学知识解决问题,让学生有运用数学成功的体验。本课采用教师在学生原有的知识经验和方法上,引导学生提出问题、解决问题的教学方法,体现以学生为主体,教师主导作用的教学思想。
教具:多媒体。制作多媒体课件以提高教学效率。
5、教学重点和难点
重点是从具体幂函数归纳认识幂函数的一些性质并作简单应用。
难点是引导学生概括出幂函数性质。
6、教学流程
基于新课程理念在教学过程中的体现,教学流程的基线为:
考虑到学生已经学习了指数函数与对数函数,对函数的学习、研究有了一定的经验和基本方法,所以教学流程又分两条线,一条以内容为明线,另一条以研究函数的基本内容和方法为暗线,教学过程中同时展开。
明线:
暗线:
二、实施方案
问题导引 师生活动 设计意图
问题情境 ⑴写出下列y关于x的函数解析式:①正方形边长x、面积y②正方体棱长x、体积y③正方形面积x、边长y④某人骑车x秒内匀速前进了1km,骑车速度为y⑤一物体位移y与位移时间x,速度1m/s 学生口答,教师板书答案。幻灯片演示问题。 由具体问题入手,从熟悉的情景引入,提高学生的参与程度。符合学生认识特点。
数学建构 ⑵上述函数解析式有什么共同特征?是否为指数函数? 学生相互讨论,必要时,教师将解析式写成指数幂形式,以启发学生归纳。投影演示定义。 引导学生观察,训练学生归纳能力。并与前面知识进行区分,以进一步帮助学生明晰概念。
⑶判别下列函数中有几个幂函数?①y=②y=2x2③y=x④y=x2+x ⑤y=-x3 学生独立思考,回答。学生鉴别。幻灯片演示题目。 巩固概念,强化学生对概念形式特征的把握。
数学探究数学探究数学探究 ⑷幂函数具有哪些性质?研究函数应该是哪些方面的内容。前面指数函数、对数函数研究了哪些内容? 学生讨论,教师引导。学生回答。 引导学生回想前面学习指数函数与对数函数的研究内容和过程。启发学生用类比思想进行研究幂函数。
⑸幂函数的定义域是否与对数函数、指数函数一样,具有相同的定义域? 学生小组讨论,得到结论。引导学生举例研究。结论:幂指数不同,定义域并不完全相同,应区别对待。 激发学生探讨的欲望,提高学生主动参与程度。
⑹写出下列函数的定义域,并指出它们的奇偶性:①y=x②y=③y=x④y=x 学生解答,并归纳解决办法。引导学生与指数函数、对数函数对照比较。(幻灯片演示) 引导学生具体问题具体分析,并作简单归纳:分数指数应化成根式,负指数写成正数指数再写出定义域。幂函数的奇偶性也应具体分析。
⑺上述函数的单调性如何?如何判断? 学生思考:作图 引发学生作图研究函数性质的兴趣。函数单调性的判断,既可以使用定义,也可以通过图象解决,直观,易理解。
⑻在同一坐标系内作出上述函数的图象。 学生作图,教师巡视。将学生作图用实物投影仪演示,指出优点和错误之处。教师利用几何画板演示(附图1)通过超级链接几何画板演示。 训练学生作图的基本功,加强学生的实践,让学生在自己的经验中认识幂函数的图象。避免教师直接使用计算机演示图象,剥夺学生动手的机会。
⑼上述函数图象有哪些共同点? 学生讨论,总结。教师引导。可将学生已熟悉的函数y=,y=x一同投影,帮助学生观察。(投影演示结论) 训练学生观察分析能力。
⑽回答第7个问题。 学生思考,回答。教师注意学生叙述的严密。 训练学生的语言叙述能力。再次体会与指数函数、对数函数性质的区别。体会幂指数的不同情况对函数单调性的影响。
⑾图象之间有什么区别?特别是在分布上。与常数有什么联系? 教师通过几何画板演示图象在第一象限内的变化规律,以验证学生猜想。通过超级链接几何画板演示。(附图2) 这是较高要求,可以让学生自由猜想和发言。进一步提高学生观察,归纳能力。
数学应用 ⑿巩固练习 写出下列函数的定义域,并指出它们的奇偶性和单调性:①y=x②y=x③y=x。 学生独立思考并回答。 训练学生自觉运用幂函数图象性质的基本规律。
⒀简单应用1:比较下列各组中两个值的大小,并说明理由:①0.75,0.76;②(-0.95),(-0.96);③0.23,0.24;④0.31,0.31 学生思考,作答,教师引导学生叙述语言的逻辑性。 训练学生用函数性质进行解释,强化学生逻辑意识。其中第④小题是利用指数函数性质解决,注意区别。
⒁请学生考虑可以如何验证上述答案的正确。 学生实践。 使用计算器验证,提高学生使用学习工具的意识。
⒂简单应用2:幂函数y=(m-3m-3)x在区间上是减函数,求m的值。 学生思考,作答。教师板演。 对幂函数定义进一步巩固,对函数性质作初步应用。同时训练学生对初步答案进行筛选。
⒃简单应用2:已知(a+1)<(3-2a),试求a的取值范围。 学生思考,作答。教师板演。 训练学生灵活使用性质解题。
数学交流 ⒄小结:今天的学习内容和方法有哪些?你有哪些收获和经验? 学生思考、小组讨论,教师引导。 让学生回顾,小结,将对学生形成知识系统产生积极影响。
数学再现 ⒅布置作业:课本p.73 2、3、4、思考5 思考5作为训练学生应用数学于实际的较好例子,应让能力较好学生得到充分发展。
几点说明:
⑴本节课开始时要注意用相关熟悉例子引入新课。
⑵画函数图象时,如果学生已能够运用计算器或相关计算机软件作图,可以让学生自己操作,以提高学生探索问题的兴趣和能力,并提高教学效率。
⑶由于课程标准对幂函数的研究范围有相对限制,故第11个问题要求较高,建议视具体情况选择教学。
⑷本设计相关课件采用PowerPoint演示文稿,其中部分使用超级链接至几何画板(4.06版本)进行演示。
附图1
附图2 幂函数在第一象限内的变化规律演示
问题情境引入
数学建构
数学探究
数学交流
数学应用
引例,得出幂函数的定义
研究具体幂函数的图象和性质
小结及布置作业
简单应用
归纳幂函数的图象和性质
函数的定义域、值域
函数图象和性质的研究基本方法
函数的奇偶性、单调性
函数的图象
函数性质的应用
归纳函数的基本性质(共16张PPT)
人文关怀 和谐共进
问题1:如果张红购买了每千克1元的蔬菜x千克,那
么她需要付的钱数y(元)和购买的蔬菜量x
(千克)之间有何关系?
问题2:如果正方形的边长为x,那么正方形面积y=?
问题3:如果正方体的棱长为x,那么正方体体积y= ?
问题4:如果正方形场地的面积为x,那么正方形的边长
y= ?
问题5:如果某人x秒内骑车行进1千米,那么他骑车的
平均速度y= ?(千米/秒)
问题情境
你能发现这几个函数解析式有什么共同点吗
探索发现
高一数学备课组
2.4 幂函数
一、幂函数定义:
一般地,形如 的函数称为幂函数,其中 为自变量,α为常数.
思考:幂函数与指数函数有什么区别?
√
√
√
×
×
1.判断下列函数哪些是幂函数?
(1) (2)
(3) (4)
(5)
2.若幂函数y=f(x)的图象经过点(3, 27 )
则f(2)=____
8
例1.写出下列函数的定义域,并分别指出它们
的奇偶性:
定义域为R,奇函数
定义域为 ,非奇非偶
定义域为 ,偶函数
研究函数的定义域和奇偶性,对作函数图象有什么作用
二、幂函数的图象
试作出下列函数的图象
例2.比较下列各组数的大小:
<
>
>
>
知识应用:
解后反思
两个数比较大小时,何时用幂函数模型,何时用指数函数模型?
拓展延伸
试写出函数 的定义域,并指出其奇偶性.
小结:
⒈幂函数概念,常见幂函数的图像,幂函数图像变化情况和性质;
⒉应用常见幂函数的单调性比较两个同指数的指数幂的大小。
一、基本内容
小结:
二、思想方法
1.通过研究函数的性质来指导作图,反过来又借助于函数图象来进一步研究函数性质;
2.根据对某类事物中的一部分对象的情况,而作出关于该类事物一般性结论的推理,其结论是否正确,还需要理论的证明和实践的检验。
基础作业:
《课本》P73 EX 1, 2, 3
α>1 0<α<1 α<0
奇函数
偶函数
非奇非偶函数
研究性作业:
y=x3
y=x2
y=x -2
y=x-1
α>1 0<α<1 α<0
奇函数
偶函数
非奇非偶函数
y=x3
y=x2
x
O
y=x2
y
y=x3
1
1
y=x
(1)图象都过(0,0)点和
(1,1)点;
(2)在第一象限内,在[0,+∞)上是增函数。
α > 0
观察图象,说一说它们
有什么共同性质?
x
y
O
y=x-2
y=x-1
y=x-2
y=x-1
1
1
观察图象,说一说它们有什么共同特征?
(1)图象都过(1,1)点;
(2)在第一象限内,在(0,+∞)上是减函数。
(3)在第一象限,图象向上
与y 轴无限接近,向右与 x 轴无限接近。
α < 0高一数学导学案
课题:幂函数 主备人: 审核人: 日期:2009.10.26
班级 学号 姓名
[学习任务]
1.通过实例了解幂函数的概念及幂函数与指数函数的区别。
2.会画出幂函数的图象,并了解它们的性质。
3.会用常见的幂函数的性质解决比较大小等问题。
[课前预习]
1.幂函数概念:
一般地,我们把形如 的函数称为幂函数,其中x是自变量,是常数。
2.幂函数的图象
在同一平面直角坐标系中作出幂函数
的图象。
3.幂函数的性质
(1)所有的幂函数在()都有定义,并且图象都过定点(1,1)
(2),幂函数的图象都通过原点,并且在[]上是增函数特别地,当时,的图象都在y=x图象的下方,越大,下凸的程度越大。当时,的图象都在y=x图象的上方,越小,上凸的程度越大。
(3),幂函数的图象在区间(]上是减函数,并且以x轴正半轴与y轴正半轴为幂函数的渐近浅。
(4)当为奇数时,幂函数为奇函数;当为偶数时,幂函数为偶函数。
[合作探究]
学点一 幂函数的定义域、奇偶性、单调性。
例1.写出下列函数的定义域,并指出它们的奇偶性的单调性。
(1) (2) (3)
学点二 比较大小
例2.比较下组各组数中两个值的大小。
(1)30.8,30.7 (2)0.213,0.233 (3)
[自我检测]
1.求下列幂函数的定义域、奇偶性
(1) (2) (3) (4)
2.比较下列各组数中两个值的大小
(1)1.52.5,0.32.5 (2)
3.已知函数在区间上是单调性增函数,求实数m的取值范围。
[学后反思]
www.