2021-2022学年高二上学期数学人教A版必修2简单几何体的内切球问题 课件(共15张PPT)

文档属性

名称 2021-2022学年高二上学期数学人教A版必修2简单几何体的内切球问题 课件(共15张PPT)
格式 zip
文件大小 839.0KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2021-10-23 19:19:23

图片预览

文档简介

(共15张PPT)
简单几何体
2.内切球
内切球
基础知识
球心到各面距离相等且等于半径的球是几何体的内切球。
定义
内切圆
与多边形各边都相切的圆叫做多边形的内切圆。
三角形内切圆
O
A
B
C
r
等面积法
等体积法
内切球
问题
内切球
等体积法求内切球半径
内切球
等体积法求内切球半径
内切球
等体积法求内切球半径
1.正三棱锥P-ABC底面边长为6,侧棱长为 ,求其内切球的半径为____.
2.某三棱锥的三视图如图所示,
则该三棱锥内切球的表面积为__________.
内切球
2.4
2.4
2.4
2.5
2.5
2.5
2.5
思考
周长 表面积
面积 体积
外接圆 外接球
内切圆 内接球
等边三角形
正四面体
类比
1.正方体的内切球与其外接球的体积之比为____.
2.如图所示是古希腊数学家阿基米德的墓碑文,墓碑上刻着一个圆柱,圆柱内有一个内切球,这个球的直径恰好与圆柱的高相等,相传这个图形表达了阿基米德最引以为豪的发现。我们来重温这个伟大发现,圆柱的体积与球的体积之比和圆柱的表面积与球的表面积之比分别为____.
小练