(共27张PPT)
RJ八(上)
教学课件
第十二章 全等三角形
12.3 角的平分线的性质
第1课时 角的平分线的性质
学习目标
1.通过操作、验证等方式,探究并掌握角平分线的性质定理.(难点)
2.能运用角的平分线性质解决简单的几何问题. (重点)
问题1:在纸上画一个角,你能得到这个角的平分
线吗?
用量角器度量,也可用折纸的方法.
问题2:如果把纸片换成木板、钢板等,还能用对折的方法得到木板、钢板的角平分线吗?
问题3:如图,是一个角平分仪,其中AB=AD,BC=
DC.将点A放在角的顶点,AB和AD沿着角的两边放下,沿AC画一条射线AE,AE就是角平分线,你能说明它的道理吗
A
B
C
(E)
D
其依据是SSS,两全等三角形的
对应角相等.
问题:如果没有角平分仪,我们用数学作图工具,能实现该仪器的功能吗?
尺规作角平分线
1
做一做:请大家找到用尺规作角的平分线的方法,并说明作图方法与仪器的关系.
提示:
(1)已知什么?求作什么?
(2)把平分角的仪器放在角的两边,仪器的顶点与角的顶点重合,且仪器的两边相等,怎样在作图中体现这个过程呢
(3)在平分角的仪器中,BC=DC,怎样在作图中体现这个过程呢?
(4)为什么作出的射线是角平分线?
A
B
O
A
B
M
N
C
O
已知:∠AOB.
求作:∠AOB的平分线.
注意:作角平分线是最基本的尺规作图,大家一定要掌握哦!
作法:
(1)以点O为圆心,适当
长为半径画弧,交OA于
点M,交OB于点N.
(2)分别以点M、N为圆心,大于 MN的长为半径画弧,两弧在∠AOB的内部相交于点C.
(3)画射线OC.射线OC即为所求.
已知:平角∠AOB.
求作:平角∠AOB的角平分线.
结论:作平角的平分线的方法就是过直线上一点作这条直线的垂线的方法.
A
B
O
C
1. 操作测量:取点P的三个不同的位置,分别过点P作PD⊥OA,PE ⊥OB,点D、E为垂足,测量PD、PE的长.将三次数据填入下表:
2. 观察测量结果,写出结论:__________.
PD PE
第一次
第二次
第三次
C
O
B
A
PD=PE
p
D
E
实验:OC是∠AOB的平分线,点P是射线OC上的
任意一点.
猜想:角的平分线上的点到角的两边的距离相等.
角平分线的性质
2
【验证猜想】已知:如图, ∠AOC= ∠BOC,点P在OC上,PD⊥OA,PE⊥OB,垂足分别为D、E.
求证:PD=PE.
P
A
O
B
C
D
E
证明:
∵ PD⊥OA,PE⊥OB,
∴ ∠PDO= ∠PEO=90 °.
在△PDO和△PEO中,
∠PDO= ∠PEO,
∠AOC= ∠BOC,
OP= OP,
∴ △PDO ≌△PEO(AAS).
∴PD=PE.
一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即
1.明确命题中的已知和求证;
2.根据题意,画出图形,并用数学符号表示已知和求证;
3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.
★性质定理:角的平分线上的点到角的两边的距离相等.
▼应用所具备的条件:
(1)角的平分线;
(2)点在该平分线上;
(3)垂直距离.
▼定理的作用:
证明线段相等.
▼应用格式:
∵OP 是∠AOB的平分线,
∴PD = PE.
推理的理由有三个,必须写完全,不能少了任何一个.
PD⊥OA,PE⊥OB,
B
A
D
O
P
E
C
判一判:(1)∵ 如下左图,AD平分∠BAC(已知),
∴ = ,( )
在角的平分线上的点到这个角的两边的距离相等
BD CD
×
B
A
D
C
(2)∵ 如上右图, DC⊥AC,DB⊥AB (已知).
∴ = ,
( )
在角的平分线上的点到这个角的两边的距离相等
BD CD
×
B
A
D
C
已知:如图,在△ABC中,AD是它的角平分线,且BD=CD,DE⊥AB, DF⊥AC.垂足分别为E、F.
求证:EB=FC.
A
B
C
D
E
F
证明: ∵AD是∠BAC的角平分线, DE⊥AB, DF⊥AC,
∴ DE=DF , ∠DEB=∠DFC=90 °.
在Rt△BDE 和 Rt△CDF中,
DE=DF,
BD=CD,
∴ Rt△BDE ≌ Rt△CDF(HL).
∴ EB=FC.
例1
如图,AM是∠BAC的平分线,点P在AM上,PD⊥AB,PE⊥AC,垂足分别是D、E,PD=4cm,则PE=______cm.
B
A
C
P
M
D
E
4
温馨提示:存在两条垂线段———直接应用
例2
A
B
C
P
【变式1】如图,在Rt△ABC中,AC=BC,∠C=90°,AP平分∠BAC交BC于点P,若PC=4, AB=14.
(1)则点P到AB的距离为_______;
D
4
温馨提示:存在一条垂线段———构造应用
A
B
C
P
【变式2】如图,在Rt △ABC中,AC=BC,∠C=90°,AP平分∠BAC交BC于点P,若PC=4,AB=14.
(2)求△APB的面积;
D
(3)求 PDB的周长.
·AB·PD=28.
解:由垂直平分线的性质,可知,PD=PC=4,
=
.
解:
1.应用角平分线性质:
存在角平分线
涉及距离问题
2.联系角平分线性质:
面积
周长
条件
利用角平分线的性质所得到的等量关系进行转化求解
1.△ABC中, ∠C=90°,AD平分∠CAB,且BC=8,BD=5,则点D到AB的距是 .
A
B
C
D
3
2.用尺规作图作一个已知角的平分线的示意图如图所示,则能说明∠AOC=∠BOC的依据是( )
A.SSS B.ASA
C.AAS D.角平分线上的点到角两边的距离相等
A
B
M
N
C
O
A
3.如图,AD是△ABC的角平分线,DE⊥AB,垂足为E,S△ABC=7,DE=2,AB=4,则AC的长是( )
A.6 B.5 C.4 D.3
D
B
C
E
A
D
解析:过点D作DF⊥AC于点F.
∵AD是△ABC的角平分线,
DE⊥AB,
∴DF=DE=2,
解得AC=3.
F
方法总结:利用角平分线的性质作辅助线构造三角形的高,再利用三角形面积公式求出线段的长度是常用的方法.
E
D
C
B
A
6
8
10
4.在Rt△ABC中,BD平分∠ABC,DE⊥AB于点E,则:
(1)哪条线段与DE相等?为什么?
(2)若AB=10,BC=8,AC=6,求BE、AE的长和△AED的周长.
解:(1)DC=DE.理由如下:角平分线上的点到角两边的距离相等.
(2)在Rt△CDB和Rt△EDB中,
DC=DE,DB=DB,
∴Rt△CDB≌Rt△EDB(HL),
∴BE=BC=8.
∴ AE=AB-BE=2.
∴△AED的周长=AE+ED+DA=2+6=8.
5.如图,已知AD∥BC,P是∠BAD与 ∠ABC的平分线的交点,PE⊥AB于点E,且PE=3,求AD与BC之间的距离.
解:过点P作MN⊥AD于点M,交BC于点N.
∵ AD∥BC,
∴ MN⊥BC.
∵ AP平分∠BAD, PM⊥AD , PE⊥AB,
∴ PM= PE.
同理, PN= PE.
∴ PM= PN= PE=3.
∴ MN=6.即AD与BC之间的距离为6.
6.如图,已知AD∥BC,P是∠BAD与 ∠ABC的平分线的交点,PE⊥AB于E,且PE=3,求AD与BC之间的距离.
解:过点P作MN⊥AD于点M,交BC于点N.
∵ AD∥BC,
∴ MN⊥BC,MN的长即为AD与BC之间
的距离.
∵ AP平分∠BAD, PM⊥AD , PE⊥AB,
∴ PM= PE.
同理, PN= PE.
∴ PM= PN= PE=3.
∴ MN=6.即AD与BC之间的距离为6.
7.如图所示,D是∠ACG的平分线上的一点.DE⊥AC,DF⊥CG,垂足分别为E、F.求证:CE=CF.
证明:∵CD是∠ACG的平分线,DE⊥AC,DF⊥CG,
∴DE=DF.
在Rt△CDE和Rt△CDF中,
CD=CD,DE=DF,
∴Rt△CDE≌Rt△CDF(HL),
∴CE=CF.
角平分线
尺规作图
属于基本作图,必须熟练掌握
性质定理
一个点:角平分线上的点;
二距离:点到角两边的距离;
两相等:两条垂线段相等
辅助线
添加
过角平分线上一点向两边作垂线段