2021-2022学年度人教版八年级数学上册课件: 14.3.1 提公因式法(24张)

文档属性

名称 2021-2022学年度人教版八年级数学上册课件: 14.3.1 提公因式法(24张)
格式 pptx
文件大小 298.4KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-10-29 15:05:35

图片预览

文档简介

(共24张PPT)
RJ八(上)
教学课件
14.3 因式分解
14.3.1 提公因式法
第十四章 整式的乘法与
因式分解
学习目标
1.理解因式分解的意义和概念及其与整式乘法的区
别和联系.(重点)
2.理解并掌握提公因式法并能熟练地运用提公因式
法分解因式.(难点)
如图,一块菜地被分成三部分,你能用不同的方法表示这块草坪的面积吗?
a
b
c
m
方法一:m(a+b+c)
方法二:ma+mb+mc
m(a+b+c)=ma+mb+mc
整式乘法

问题引入
1.运用整式乘法法则或公式填空:
(1) m(a+b+c)= ;
(2) (x+1)(x-1)= ;
(3) (a+b)2 = .
ma+mb+mc
x2 -1
a2 +2ab+b2
2.根据等式的性质填空:
(1) ma+mb+mc=( )( )
(2) x2 -1 =( )( )
(3) a2 +2ab+b2 =( )2
m a+b+c
x+1 x-1
a+b
都是多项式化为几个整式的积的形式.
比一比,这些式子有什么共同点?
因式分解
1
新课讲解
把一个多项式化为几个整式的乘积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式.
x2-1 (x+1)(x-1)
因式分解
整式乘法
x2-1 = (x+1)(x-1)
等式的特征:左边是多项式,右边是几个整式的乘积.
想一想:整式乘法与因式分解有什么关系?
是互为相反的变形,即
新课讲解
下列从左到右的变形中是因式分解的有(  )
①x2-y2-1=(x+y)(x-y)-1;②x3+x=x(x2+1);③(x-y)2=x2-2xy+y2;④x2-9y2=(x+3y)(x-3y).
A.1个 B.2个 C.3个 D.4个
B
解题技巧:因式分解与整式乘法是相反方向的变形,即互逆运算,二者是一个式子的不同表现形式.因式分解的右边是两个或几个因式积的形式,整式乘法的右边是多项式的形式.
例1
新课讲解
【练习】在下列等式中,从左到右的变形是因式分解的有 (填序号),不是的请说明理由.








am+bm+c=m(a+b)+c;
24x2y=3x ·8xy;
x2-1=(x+1)(x-1);
(2x+1)2=4x2+4x+1;
x2+x=x2(1+ );
2x+4y+6z=2(x+2y+3z).
最后不是积的运算.
因式分解的对象是多项式.
是整式乘法.
每个因式必须是整式.
新课讲解
pa+pb+pc
多项式中各项都含有的相同因式,叫作这个多项式的公因式.
相同因式p
问题1:观察下列多项式,它们有什么共同特点?
x2+x
相同因式x
用提公因式法分解因式
2
新课讲解
一般地,如果多项式的各项有公因式,可以把这个公因式提取出来,将多项式写成公因式与另一个因式的乘积的形式,这种分解因式的方法叫做提公因式法.
( a+b+c )
pa+ pb +pc
p
=
新课讲解
找3x 2 – 6 xy 的公因式.
系数:最大公约数
3
字母:相同的字母
x
所以公因式是3x.
指数:相同字母的最低次数
1
问题2:如何确定一个多项式的公因式?
新课讲解
3.定指数:相同字母的指数取各项中最小的一个,
即字母的最低次数.
1.定系数:公因式的系数是多项式各项系数的最
大公约数.
2.定字母:字母取多项式各项中都含有的相同
字母.
★找多项式公因式的基本步骤
新课讲解
找一找:下列各多项式的公因式是什么?
3
a
a2
2(m+n)
3mn
-2xy
(1) 3x+6y;
(2)ab-2ac;
(3) a2 - a3;
(4)4(m+n) 2 +2(m+n);
(5)9m2n-6mn;
(6)-6x2y-8xy2.
新课讲解
(1) 8a3b2 + 12ab3c;
把下列各式分解因式:
分析:提公因式法基本步骤(分两步):
第一步:找出公因式;
第二步:提取公因式,即将多项式化为两个因式的
乘积.
(2) 2a(b+c) - 3(b+c).
公因式既可以是一个单项式的形式,也可以是一个多项式的形式.
整体思想是数学中一种重要且常用的思想方法.
例2
新课讲解
解:(1) 8a3b2 + 12ab3c
=4ab2 ·2a2+4ab2 ·3bc
=4ab2(2a2+3bc).
如果提出公因式4ab,另一个因式是否还有公因式?
另一个因式将是2a2b+3b2c,
它还有公因式b.
(2) 2a(b+c)-3(b+c)
=(b+c)(2a-3).
如何检查因式分解是否正确?
做整式乘法运算.
新课讲解
【练习】因式分解:
(1)3a3c2+12ab3c;
(2)2a(b+c)-3(b+c);
(3)(a+b)(a-b)-a-b.
(3)原式=(a+b)(a-b-1).
解:(1)原式=3ac(a2c+4b3).
(2)原式=(2a-3)(b+c).
新课讲解
(1)12x2y+18xy2=3xy(4x + 6y);
解:(1)错误,公因式没有提尽,还可以提出公因式2.正解:原式=6xy(2x+3y).
【易错】下面的因式分解正确吗?如果有错,错
在哪里?怎样改正?
(2)3x2 - 6xy+x =x(3x-6y);
(3)- x2+xy-xz= - x(x+y-z).
(2)错误,提公因式后漏项1.正解:原式=
3x·x-6y·x+1·x=x(3x-6y+1).
(3)错误,提出负号后括号里的项没变号.
正解:原式= - (x2-xy+xz)=- x(x-y+z).
新课讲解
计算:
(1)39×37-13×91;
(2)29×20.18+72×20.18+13×20.18-20.18×14.
(2)原式=20.18×(29+72+13-14)=2018.
=13×20=260.
解:(1)原式=3×13×37-13×91
=13×(3×37-91)
解题技巧:在计算求值时,若式子各项都含有公因式,用提取公因式的方法可使运算简便.
例3
新课讲解
已知a+b=7,ab=4,求a2b+ab2的值.
∴a2b+ab2=ab(a+b)=4×7=28.
解:∵a+b=7,ab=4,
解题技巧:含a±b,ab的求值题,通常要将所求代数式进行因式分解,将其变形为能用a±b和ab表示的式子,然后将a±b,ab的值整体代入计算.
例4
新课讲解
1.多项式15m3n2+5m2n-20m2n3的公因式是(  )
A.5mn B.5m2n2 C.5m2n D.5mn2
2.把多项式(x+2)(x-2)+(x-2)提取公因式(x-
2)后,余下的部分是(  )
A.x+1 B.2x C.x+2 D.x+3
3.下列多项式的分解因式,正确的是(  )
A.12xyz-9x2y2=3xyz(4-3xyz)
B.3a2y-3ay+6y=3y(a2-a+2)
C.-x2+xy-xz=-x(x2+y-z)
D.a2b+5ab-b=b(a2+5a)
B
C
D
随堂即练
4.把下列各式分解因式:
(1)8m2n+2mn=_____________;
(2)12xyz-9x2y2=_____________;
(3)p(a2 + b2 )- q(a2 + b2 )=_____________;
(4) -x3y3-x2y2-xy=_______________;
2mn(4m+1)
3xy(4z-3xy)
(a2+b2)(p-q)
-xy(x2y2+xy+1)
(5)(x-y)2+y(y-x)=_____________.
(y-x)(2y-x)
5.若9a2(x-y)2-3a(y-x)3=M·(3a+x-y),则M等
于__________.
3a(x-y)2
随堂即练
6.简便计算:
(1) 1.992+1.99×0.01; (2)20172+2017-20182;
(3)(-2)101+(-2)100.
(2) 原式=2017×(2017+1)-20182
=2017×2018-20182
=2018×(2017-2018)
=-2018.
解:(1) 原式=1.99×(1.99+0.01)=3.98.
(3)原式=(-2)100 ×(-2+1) =2100 ×(-1)=-2100.
随堂即练
解:(1)∵2x+y=4,xy=3,
∴2x2y+xy2=xy(2x+y)=3×4=12.
(2)原式=(2x+1)[(2x+1)-(2x-1)]
=(2x+1)(2x+1-2x+1)
=2(2x+1).
7.(1)已知 2x+y=4,xy=3,求代数式2x2y+xy2的值.
(2)化简求值:(2x+1)2-(2x+1)(2x-1),其中x= .
将x= 代入上式,得
原式=4.
随堂即练
因式
分解
定义
ma+mb+mc=m(a+b+c)
方法
提公因式法
公式法
确定公因式的方法:三定,即定系数;定字母;定指数
基本步骤(分两步):
第一步找公因式;第二步提公因式
(下节课学习)
注意
1.分解因式是一种恒等变形;
2.公因式要提尽;
3.不要漏项;
4.提负号要注意变号
课堂总结