北师大版七年级数学上册教学设计
1.7.1有理数的乘法
教学内容 第二章《有理数及其运算》1.7.1 有理数的乘法(1)
科目 数学 教学对象 七年级 课时 1
一、教材内容分析
有理数乘法是在“有理数的加减混合运算”之后的一个学习内容。在本章教材的编排中,“有理数的乘法”起着承上启下的作用,它既是有理数加减的深入学习,又是有理数除法、有理数乘方的基础,在有理数运算中有很重要的地位。
二、教学目标(知识,技能,情感态度、价值观)
1.知识目标:掌握有理数的乘法法则进行熟练的运算并联系实际解决简单的的实际问题,能利用乘法运算律简化运算.2.能力目标:培养学生的发展、观察、归纳、猜想、验证等能力. 3.情感与价值目标:在探索过程中尊重学生的学习态度,树立学生学习数学的自信心,培养学生严谨的数学思维习惯。
三、学习者特征分析
因为学生在小学的学习里已经接触过正数和0的乘法,对于两个正数相乘、正数与0相乘的情况学生已经掌握。同时由于前面学习了有理数的加减法运算,学生对负数参与运算有了一定的认识,但仍还有一定的困难。另外,经过前一阶段的教学,学生对数学问题的研究方法有了一定的了解,课堂上合作交流也做得相对较好。
四、教学策略选择与设计
本节课我们也同时看到在新课引入和法则探究两个教学环节中,本教案设计与教材完全不同,充分体现了教师是用教材,而不是教教材,这也是新课程所倡导的教学理念。教师“教教科书”是传统的“教书匠”的表现,“用教科书教”才是现代教师应有的姿态。我们教师应从学生实际出发,因材施教,创造性地使用教材,大胆对教材内容进行取舍、深加工、再创造,设计出活生生的、丰富多彩的课来,充分有效地将教材的知识激活,形成有教师个性的教材知识。既要有能力把问题简明地阐述清楚,同时也要有能力引导学生去探索、去自主学习。
五、教学环境及资源准备
白板,多媒体投影仪
六、教学过程
教学过程 教师活动 学生活动 设计意图及资源准备
一.情景导入、提出问题。 在冷冻室中,用冷却的方法可将液体冰激凌的温度每1 分钟下降2 ℃.如果现在液体冰激凌的温度是0 ℃.(规定用正数表示温度上升,负数表示温度下降;以现在对应时间为“基准”0分钟, 往后记为正, 之前记为负, 如:1分钟前记为-1分钟) 请列出算式,完成填空.(1)5 分钟后,液体冰激凌的温度是________℃.(2)8 分钟 前,液体冰激凌的温度是___________℃. 回答问题一:回答问题二: 通过问题情境的创设,引入了本课的课题,激发了学生的好奇心和求知欲,调动了学生的学习积极性,让学生知道数学知识无处不在,应用数学无时不有.符合“数学教学应从生活经验出发”的新课程标准要求.
二.探究新知、互助学习。 由甲乙两个水库,甲水库的水每天升高3米,乙水库的水每天降低3米,如果用正数表示升高,用负数表示降低。问:4天后甲、乙两个水库的水各升高了多少米? 甲:(-2)+3+3+3=12米 3×4=12米乙:(-3)+ (-3)+ (-3)+ (-3)= -12米 (-3)×4=-12米 提出问题,引出新课。本活动的设计意图是引导学生通过加法的计算和数字的规律变化.
三.分析探索、问题解决 议一议:(-3)×4=-12(-3)×3= (-3)×2= (-3)×1= (-3)×0= 议一议:(-3)×4=-12(-3)×3= -9 (-3)×2= -6 (-3)×1= -3 (-3)×0= 0
猜一猜:(-3)×(-1)= (-3)×(-2)= (-3)×(-3)= (-3)×(-4)= 问题:1.通过观察这组算式你发现积的正负号与因数的正负号有什么关系?2.积的绝对值与因数的绝对值有什么关系?3.一个因数减少1时,积怎样变化? (-3)×(-1)= 3 (-3)×(-2)= 6 (-3)×(-3)= 9 (-3)×(-4)= 12 观察一个因数增加(减少)1,乘积的变化规律,递推出两个负数相乘的结果,进而推出有理数乘法的法则.通过乘法法则的推导,揭示了有理数运算中加法与乘法的关系,体会转化的数学思想.
四.知识理顺、得出结论。 教师出示有理数乘法法则(板书):两数相乘,同号得正,异号得负,并把绝对值相乘;任何数与零相乘,都得零.师:在进行有理数乘法运算时,要注意两个方面的问题:一.确定积的符号。积的绝对值是两个因数绝对值的积 把有理数乘法法则分为两个步骤。 教师提出尝试性问题,引导学生思考----有理数乘法的运算规律,学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结能力和口头表达能力,又使学生法则记得牢,领会的深刻.
五.开放训练、体现应用 这四个例题,示范讲解第一个小题,明确步骤:一观察、二符号、三计算,规范书写.第2,3,4小题由学生在黑板上板书,班级分组以竞赛的形式完成,找出不足,纠错改正,激发兴趣.完成例题后归纳得到:如果两个有理数的乘积为1,我们称其中的一个数是另一个数的倒数,也称这两个有理数互为倒数.注意:引出互为倒数的概念的同时,要注意与互为相反数的概念比较,避免产生混淆错误,并注意本节课不讨论如何求倒数的问题.倒数:如果两个有理数的乘积为1,我们称这两个有理数互为倒数. 例题先由教师示范性板书,向学生说明解题的格式与步骤,再由学生独立完成,所以处理例题不是单一的教师讲,学生模仿,而是要让学生独立尝试解决.教师提前应预料到学生容易出现哪些错误,只有让学生在解决问题的过程中亲身经历错误,才能真正提高解决问题的能力.
六.小组活动、互助学习 活动规则:班级分成8个小组,每个小组成员写出自己喜欢的有理数,老师将会任选两名小组的成员来展示,要求其他同学回答他们的乘积. 同学们写出自己喜欢的有理数,并与全班同学一起分享 教师任选两名小组的成员来展示,要求其他同学回答他们的乘积.
七.分析探索、问题解决 点名由学生分析,注意运算顺序和简便算法,由学生分组完成,纠错改正. 多个数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积的符号为负;当负因数有偶数个时,积的符号为正.只要有一个数为零,积就为零. 教师及时设计一组练习帮助学生巩固提高,这样,不仅使学生掌握了运算法则,而且积累了解题经验,发展他们有条理的思考能力.
八.小组活动、深入练习 活动规则:班级分成8个小组,每个小组成员写出自己喜欢的有理数,老师将会任选三名小组的成员来展示,要求其他同学回答他们的乘积. 同学们写出自己喜欢的有理数,并与全班同学一起分享 教师任选两名小组的成员来展示,要求其他同学回答他们的乘积.不仅使学生掌握了运算法则,而且积累了解题经验,发展他们有条理的思考能力.
九.拓展提升、课堂练习 若a,b为有理数,请根据下列条件解答问题:(1)若ab>0,a+b>0,则a,b的符号怎样?(2)若ab>0,a+b<0,则a,b的符号怎样?(3)若ab<0,a+b>0,|a|>|b|,则a,b的符号怎样? 学生刚开始训练时注意板书格式,要注意格式归范,一开始对每一步运算应注明理由,运算熟练后,可不要求书写每一步的理由. 本节课主要训练学生的计算能力,必须要求学生能够明确算理,准确作答.
十、小结 今天主要学习了有理数乘法法则,大家要牢记,两个负数相乘得正数,简单地说:“负负得正”. 让学生自己总结今天学到了什么? 课堂总结要引导学生回顾整节课的学习历程,让学生对知识有一个沉淀、吸收的过程,达到对所学知识的内化和升华.教师对于主动发言的学生进行鼓励.
板书设计 2.7有理数的乘法(1)投影区有理数的乘法法则:倒数:例题学生活动区
教学流程图
七、教学评价设计
一、授课流程反思通过水库水位的变化问题,引入了本课的课题,激发了学生的好奇心和求知欲,调动了学生的学习积极性,让学生知道数学知识无处不在,应用数学无时不有,符合“数学教学应从生活经验出发”的新课程标准要求.二、讲授效果反思通过对算式和结果的规律的观察、分析和探究,引导学生通过加法的计算和数字的规律变化,递推出两个负数相乘的结果,得到有理数乘法的法则.推导的过程揭示了有理数运算中加法与乘法的关系,让学生体会了转化的数学思想.
开 始
改写加法算式
引 入
有理数的乘法
观察、列式
课件
课本49页的问题
比较、讨论
法则
课件
例1
例2
51页练习
课件
应用
小结
延伸
PAGE
3