冀教版 数学五年级上册 二、 小数乘法 教案(表格式)

文档属性

名称 冀教版 数学五年级上册 二、 小数乘法 教案(表格式)
格式 doc
文件大小 74.5KB
资源类型 教案
版本资源 冀教版
科目 数学
更新时间 2021-10-29 11:49:34

图片预览

文档简介

小数乘法
【教学内容】
小数点位置变化——小数点位置向右移动的规律和应用
【教学目标】
1.经历自主探索小数点位置向右移动的变化规律,以及简单应用的过程。
2.理解并掌握小数点向右移动的变化规律,会运用规律口算小数乘10、100、1000的乘法,会把高级单位的单名数改写成低级单位的数或复名数。
3.积极参加数学活动,获得用已有知识解决问题的成功体验,感受数学学习的价值。
【教学重难点】
1.理解并掌握小数点向右移动的变化规律。
2.会运用规律口算小数乘10、100、1000的乘法。
3.把高级单位的单名数改写成低级单位的数或复名数。
【教学过程】
教学环节 设计意图 教学预设
一、创设情境1.师生谈话。先交流你见过什么样的纽扣,再估计一枚纽扣大概多少钱。教师说明一枚纽扣5分钱。 由“见过什么样的纽扣”和“纽扣的价钱”的谈话开始学习,创设和谐的教学氛围。使学生体验到数学问题来源于生活,激发学生求知的欲望。 师:同学们,纽扣是生活中比较常见的物品。谁能给大家说说,你们都见过什么样的纽扣?学生可能会从纽扣的不同材料来说,比如:金属纽扣、塑料纽扣等等;也可能会从纽扣的不同外形来说,如:两眼的纽扣、四眼的纽扣等等。师:看来同学们对纽扣的了解还真不少。老师这里也有一枚纽扣,(出示纽扣)猜一猜这枚纽扣大概多少钱呢?学生猜测纽扣的价钱。如果学生没有猜到,老师就告诉学生这枚纽扣的价钱是5分一枚。师:请同学们以“元”为单位用小数表示这枚纽扣的价钱。板书:1枚纽扣0.05元。
二、解决问题1.出示情境图,教师提出“1枚纽扣5分钱,10枚纽扣多少钱?”的问题。鼓励学生用自己的方法解答。 每个学生利用已有经验都能解答的问题,给学生提供用自己的方法解决问题的机会。 师:1枚纽扣5分钱,10枚多少钱呢?你能用自己的方法计算吗?试一试!学生独立思考,计算。
2.交流学生计算的方法和结果。重点让学生说一说自己是怎样想的,怎样算的。教师及时进行启发性提问。得出:10枚纽扣0.5元的结果。 展示自己的学习成果,分享他人的经验,体验自主解决问题的快乐。同时用0.5元表示计算的结果,为列出小数乘法算式作铺垫。 师:谁能把你的计算方法和结果说给大家听一听?学生说算法,教师作必要的提问。如:生1:1枚纽扣5分钱,10枚就是50分,也就是5角。师:5角写成以元为单位的数是多少?生1:0.5元。生2:1枚纽扣5分钱,10枚是5角,也就是0.5元。师:你能列出算式吗?学生说教师板书:5×10=50(分)50分=5角=0.5元……对于学生的说法,只要合理都要予以肯定。
3.提出“把5分改写成以‘元’为单位的数,列出算式”的要求。学生写完后,全班交流,重点说一说是怎样想的。 在已有的知识和活动经验背景下,由学生自己写出小数乘法算式,既为总结规律提供课程资源,也为下面的自己计算并列式打基础。 师:一枚纽扣5分钱,10枚纽扣是0.5元,你们能把5分写成以“元”做单位的数,写出算式吗?试一试!学生写算式,教师巡视,个别指导。师:谁来说一说是怎样想的,写出的算式是什么?生:我是这样想的,5分改写成以元为单位的数是0.05元,求10枚纽扣多少钱,列式是0.05×10,根据前面的计算结果,列出算式是0.05×10=0.5(元)教师板书:0.05×10=0.5(元)
4.提出“100枚纽扣多少钱?”的问题。(1)提出“一枚纽扣5分钱,100枚纽扣多少钱?”的问题,让学生独立计算。 为学生提供运用已有知识和技能解决实际问题的机会,培养自主学习的能力。 师:1枚纽扣5分钱,10枚纽扣0.5元,100枚纽扣多少钱呢?自己试着算一算。学生独立思考,计算并列算式。
(2)交流学生计算的结果。重点让学生说一说自己是怎样算的。 展示学生自主学习的成果,也为列出小数乘法算式作铺垫。 师:谁来说一说你是怎样想的,怎样算的,结果是多少?学生可能出现以下几种方法:●1枚5分钱,100枚就是500分,也就是5元。●10枚是5角钱,100枚就是10个5角,是5元。●1枚纽扣5分钱,10枚纽扣5角钱, 100枚就是10个5角,是5元。……
(3)提出“把5分改写成以‘元’为单位的数,写出乘法算式”的要求。学生写完后,汇报,教师板书出来。 根据计算结果自己写出小数乘法算式,为总结小数点向右移动的变化规律提供课程资源。 师:对!一枚纽扣5分钱,100枚纽扣就是5元。请你把5分改写成以“元”为单位的数,并列出算式。学生写完后,指名汇报。教师板书:0.05×100=5(元)
5.提出“1000枚纽扣多少钱?”的问题,让学生自己列式计算。 在已有经验的基础上,简化学习环节,提高活动效率。 师:一枚纽扣5分钱,100枚纽扣5元,1000枚纽扣多少钱呢?自己算一算,并写出算式表示。学生计算并列式,教师巡视,个别指导。
6.交流学生个性化的计算方法和列出的算式,教师板书出来。 展示、分享自己学习的成果,为下面总结小数点向右移动的规律提供课程资源。 师:谁来说一说,你是怎样想的,算出的结果是多少?怎样列式的?学生可能会出现以下几种方法。●100枚纽扣5元钱,1000枚中有10个100枚,就需要10个5元,是50元。算式是:0.05×1000=50(元)●10枚纽扣5角钱,100枚纽扣5元钱,1000枚纽扣要50元。列式是:0.05×1000=50(元)……根据学生的回答,教师板书:0.05×1000=50(元)
三、总结规律1.提出“说一说”问题:观察上面的几个算式,你发现了什么?给学生一定的思考时间。 提出具体的问题,有利于学生观察和思考。给学生一定的独立思考的时间,为下面的交流奠定基础。 师:观察我们写出的这三个算式中的因数,你发现了什么?学生独立思考。
2.交流学生的发现。鼓励学生用自己的语言大胆表述,教师作为参与者可进行必要的指导或示范表达。 在交流的过程中,教师必要的引导有利于规范学生的语言描述,为总结小数点变化规律做铺垫。 师:谁愿意给大家说一说,你发现了什么?学生回答,教师及时进行启发性对话。如:生1:我发现这三个算式中第一个因数都是0.05,另一个因数不同,分别是10、100、1000。生2:第一个因数相同,都是0.05,第二个因数不同,分别是10.100、1000.师:很好!这三个算式第一个因数相同,第二个因数不同,分别是整十、整百、整千的数。谁能用扩大了几倍来描述一下这三个算式呢?生3:第一个算式是0.05扩大10倍,第二个算式是0.05扩大100倍,第三个算式是0.05扩大1000倍。师:同学们认真观察第一个算式,0.05扩大10倍,所得的积有什么特点?生:数字5不变,只是小数位数变了,原来是两位小数,现在变成了一位。师:0.05由两位小数变成一位小数,小数点是怎样变化的?生:小数点向右移动了一位。
3.总结算式中小数点变化的特点。先让学生观察第一个算式,发现0.05扩大10倍小数点的变化规律,再观察发现,总结0.05扩大100倍、扩大1000倍小数点的变化规律。 有重点的讨论,总结一个算式,有利于突破语言描述的难点,使学生学会观察、思考的方法,经历发现规律、并用语言描述的过程。 师:谁能用一句话说一说0.05×10=0.5这个算式中小数点的变化情况?生:0.05扩大10倍,小数点向右移动一位。师:说得很好!0.05扩大到原来10倍,小数点向右移动一位。大家再观察0.05扩大到原来的100倍、1000倍的积5 和50,小数点的位置又有什么变化呢?同桌互相说一说。给学生一点讨论时间,再交流。学生可能会说:生:0.05扩大到原来的100倍,小数点就向右移动两位。生:0.05扩大到原来的1000倍,小数点就向右移动三位。师:同学们说的很好,谁能把这三个算式一起说一说?生:0.05扩大到原来的10倍,小数点向右移动一位,扩大到原来的100倍,小数点向右移动二位,扩大到原来的1000倍,小数点向右移动三位。
4.总结小数点向右移动引起小数变化的规律。教师点明课题,先让学生自己读书,再指名学生回答。 总结算式中小数点变化规律先描述“扩大”,再说“移动”,而标准化的数学描述正好相反,所以,通过看书,便于学生规范语言描述。 师:通过这三个算式,我们发现一个小数扩大到原来的10倍、100倍、1000倍所的积,只是小数点的位置发生变化。这叫做小数点位置变化规律。我们今天学习的是小数点向右移动的规律板书:小数点向右移动的规律师:现在,请同学们打开课本,自己读一读大头蛙说的一段话。学生读书。师:谁来说一说小数点向右移动的规律?指名一、二人回答。
四、尝试应用1.教师出示“试一试”,要求学生自己试着做一做,并用计算器检验计算的结果。 给学生提供自主运用规律、用计算器检验计算结果的空间,感受数学学习的价值,获得积极的学习体验。 师:现在大家知道了小数点向右移动的变化规律,应用这个规律可以使一个小数乘整十、整百、整千的计算简便,我们一起来试试看。出示题目:把3.87分别扩大到原来的10倍、100倍、1000倍,各是多少?师:请同学们先试着列式计算,再用计算器检验。学生试着解答,教师巡视,发现试做中出现的共性问题,特别关注扩大到原来的1000倍计算的结果,做到心中有数。交流时,可重点进行全班指导。
2.交流学生列出的算式和计算、检验结果。先交流3.87扩大10倍、100倍,再交流3.87扩大1000倍的出现的问题:“3.87×1000,把3.87的小数点向右移动3位,位数不够了,怎么办?” 交流的过程,是学生分享自主解决问题的快乐和互相学习的过程。分两个层次交流,突出重难点,解决难点。 师:谁来说说3.87扩大到原来的10倍、100倍,你是怎么列式计算的?用计算器检验的结果怎么样?学生可能有不同的说法,只要意思对,计算正确即可。如:生1:3.87扩大到原来的10倍,列式是:3.87×10=38.7。根据小数点位置变化规律,小数点向右移动一位,原来的数就扩大10倍,所以,3.87×10只要把3.87的小数点向右移动一位,结果是3.87×10=38.7。用计算器检验结果正确。生2:3.87扩大到原来的10倍,列式是:3.87×10,只要把3.87的小数点向右移动一位就行了。结果是3.87×10=38.7。用计算器计算也是这个结果。……师:3.87扩大到原来的1000倍,怎样列式?学生说,教师板书:3.87×1000=师:3.87×1000,小数点是怎样移动的?出现了什么问题?生:小数点向右移动三位,3.87只有两位。师:谁来说一说,是怎样做的?怎样想的?学生可能会说:生:3.87×1000,小数点向右移动三位,可以把3.87看作3.870,小数点向右移动三位就是3780。如果学生提不到把3.87看成3.870,教师可以启发,如:3.87可以变成三位小数吗?怎么办?当学生明白为什么可以把8的后面补0后,教师可简单概括。师:把一个小数扩大整十、整百、整千倍时,如果小数的位数不够,可以在后面补0。
五、改写名数1.出示例2示意图,指名学生说明题目要求,鼓励学生自己独立完成“1.3米”的改写。 给学生提供自主尝试、运用规律把用小数表示的单名数改写成低级单位表示的数或复名数的机会。 师:我们一起来看,这是一张写字台面的示意图,长1.3米,请你把它改写成以厘米为单位的数。试试看。学生自己独立完成,教师进行巡视,了解学生的情况并进行个别指导。
2.交流学生改写的方法和结果,给学生充分表达不同方法的机会。 交流的过程是知识整合、提升的过程,使学生把已有的知识经验和新的方法融合在一起。 师:谁来说说自己改写的结果,再说一说是怎样想的?学生填的结果应该问题不大,但想法可能有不同。如:生1:1.3米=130厘米。因为1米=100厘米,0.3米改写成厘米就是30厘米,100厘米+30厘米=130厘米。教师板书:1.3米=100厘米+30厘米=130厘米生2:1.3米=130厘米。因为1米=100厘米,把1.3米改写成以“厘米”为单位的数可以用1.3乘进率100,只要把小数点向右移动两位就可以了。教师板书:1米=100厘米1.3×100=130(厘米)……
3.师生共同总结:把高级单位的数改写成低级单位的数,要乘进率。 在教师的指导下,尝试总结高级单位的数改写成低级单位的数的方法,培养学生数学归纳、总结、语言的表达能力,感受数学结论的科学性。 师:谁能根据今天学习的知识说一说把1.3米改写成厘米的方法?生:把米改写成厘米可以直接用1.3乘进率100,小数点向右移动两位。师:我们把高级单位的数改写成低级单位的数的方法就是乘进率。谁来说一说0.65米等于多少厘米?板书:0.65m=( )cm生:因为1米=100厘米,所以用0.65直接乘进率100,0.65的小数点向右移动两位,得到65厘米。(板书)
六、课堂练习1.“练一练”第1题。先用表格的方式呈现三个以“千米”为单位的数改写成以“米”为单位的数的练习。先让学生了解表中的信息和题目要求,再自己改写并填空。交流时,说一说是怎样想的。学生独立完成后交流结果及想法。 了解表中信息和题目要求是解决问题的基础,在把用小数表示的千米数改写成以米为单位的数的过程中,进一步掌握规律,提高应用小数点位置变化的知识解决问题的能力。 师:利用小数点位置变化的规律,可以使许多数学问题变的很简单。下面,请看“练一练”的第1题,谁能说一说从表中知道了什么?题目的要求是什么?生1:从表中知道了小汽车每分钟的速度是1.835千米,白鳍豚每分钟的速度是1.33千米,金丝猴每分钟的速度是0.63千米,龟每分钟的速度是0.0042千米。生2:题目的要求是把用千米表示的速度,改写成以“米”为单位的速度。……如果学生有其他不同的表述,只要意思正确,就给予肯定。师:请同学们自己改写,并把结果填在书上的表格中。学生自主填写,教师进行个别指导。师:谁来说一说是怎样想的,结果是多少?学生可能有不同的表述方式。如:●一个数一个数的说。生1:因为1千米=1000米,把1.835千米改写成以米为单位的数要乘进率1000,只要把小数点向右移动三位就可以了,结果是1835米。生2:因为1千米=1000米,把1.33千米改写成以米为单位的数要乘进率1000,只要把小数点向右移动三位就可以了,1.33的小数部分只有两位,就在后面添上一个0补足位数,结果是1330米。生3:因为1千米=1000米,把0.63千米改写成以米为单位的数要乘进率1000,只要把小数点向右移动三位就可以了,0.63的小数部分只有两位,就在这个数的后面添上一个0补足位数,结果是630米。生4:因为1千米=1000米,把0.0042千米改写成以米为单位的数要乘进率1000,只要把小数点向右移动三位就可以了,结果是4.2米。●概括地说:生:把四个以“千米”为单位的数改写成以“米”为单位的数,都要乘1000,也就是把每个数的小数点向右移动三位。……
2.“练一练”第2题,鼓励学生独立完成,然后集体交流。 进一步体会应用规律进行计算的简便。提高应用规律解决问题的熟练程度。 师:看“练一练”第2题。将结果填写在书上。学生独立完成,然后全班交流。
3.“练一练”的第3题,学生独立完成,然后集体订正。 必要的计算技能训练。考查学生对本节课知识技能目标的实现程度。 师:看书上“练一练”第3题,看谁算得又对又快。学生独立计算,教师巡视,帮助学习有困难的学生。
8 / 10