2021-2022学年北师大版八年级数学上册《第1章勾股定理》期中复习训练(附答案)
1.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm,在容器内壁离容器底部4cm的点B处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm的点A处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm,则该圆柱底面周长为( )
A.12cm B.14cm C.20cm D.24cm
2.下列各组数据中的三个数作为三角形的边长,其中能构成直角三角形的是( )
A.3,2,4 B.3,4,5 C.6,7,8 D.3,3,4
3.三角形的三边长为a,b,c,且满足(a+b)2=c2+2ab,则这个三角形是( )
A.等边三角形 B.钝角三角形 C.直角三角形 D.锐角三角形
4.满足下列条件的三角形中,不是直角三角形的是( )
A.三内角之比为1:2:3
B.三边长的平方之比为1:2:3
C.三边长之比为3:4:5
D.三内角之比为3:4:5
5.△ABC中,AB=AC=5,BC=8,点P是BC边上的动点,过点P作PD⊥AB于点D,PE⊥AC于点E,则PD+PE的长是( )
A.4.8 B.4.8或3.8 C.3.8 D.5
6.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形的个数有( )
A.1 B.2 C.3 D.4
7.已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为( )
A.3cm2 B.4cm2 C.6cm2 D.12cm2
8.我国是最早了解勾股定理的国家之一.下面四幅图中,不能证明勾股定理的是( )
A.B. C.D.
9.如果正整数a、b、c满足等式a2+b2=c2,那么正整数a、b、c叫做勾股数,某同学将自己探究勾股数的过程列成下表,观察表中每列数的规律,可知x+y的值为( )
A.47 B.62 C.79 D.98
10.如图,小亮将升旗的绳子拉到旗杆底端,绳子末端刚好接触到地面,然后将绳子末端拉到距离旗杆8m处,发现此时绳子末端距离地面2m,则旗杆的高度(滑轮上方的部分忽略不计)为( )
A.12m B.13m C.16m D.17m
11.如图是一个圆柱形饮料罐,底面半径是5,高是12,上底面中心有一个小圆孔,则一条到达底部的直吸管在罐内部分a的长度(罐壁的厚度和小圆孔的大小忽略不计)范围是( )
A.12≤a≤13 B.12≤a≤15 C.5≤a≤12 D.5≤a≤13
12.如图,长方体的底面边长分别为1cm和3cm,高为6cm.如果用一根细线从点A开始经过4个侧面缠绕一圈到达点B,那么所用细线最短需要 cm.
13.有一个三角形的两边长是4和5,要使这个三角形成为直角三角形,则第三边长平方为 .
14.如图所示,在△ABC中,AB:BC:CA=3:4:5,且周长为36cm,点P从点A开始沿AB边向B点以每秒1cm的速度移动;点Q从点B沿BC边向点C以每秒2cm的速度移动,如果同时出发,则过3秒时,△BPQ的面积为 cm2.
15.如图所示的网格是正方形网格,△ABC和△CDE的顶点都是网格线交点,那么∠BAC+∠CDE= °.
16.在直线l上依次摆放着七个正方形(如图所示).已知斜放置的三个正方形的面积分别是1,2,3,正放置的四个正方形的面积依次是S1,S2,S3,S4,则S1+S2+S3+S4= .
17.如图将矩形ABCD沿直线AE折叠,顶点D恰好落在BC边上F处,已知CE=3,AB=8,则BF= .
18.已知,如图:在平面直角坐标系中,O为坐标原点,四边形OABC是矩形,点A、C的坐标分别为A(10,0)、C(0,4),点D是OA的中点,点P在BC边上运动,当△ODP是腰长为5的等腰三角形时,点P的坐标为 .
19.如图,OP=1,过P作PP1⊥OP且PP1=1,根据勾股定理,得OP12=2;再过P1作P1P2⊥OP1且P1P2=1,得OP22=3;又过P2作P2P3⊥OP2且P2P3=1,得OP32=2;…依此继续,得OP20202= ,OPn2= (n为自然数,且n>0)
课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图所示),∠ACB=90°,AC=BC,若已知AB2=20,则砌墙砖块的厚度(每块砖的厚度相等)为 cm.
21.如图,已知△ABC中,∠B=90°,AB=16cm,BC=12cm,P、Q是△ABC边上的两个动点,其中点P从点A开始沿A→B方向运动,且速度为每秒1cm,点Q从点B开始沿B→C→A方向运动,且速度为每秒2cm,它们同时出发,设出发的时间为t秒.
(1)出发2秒后,求PQ2;
(2)当点Q在边BC上运动时,出发几秒钟后,△PQB能形成等腰三角形?
(3)当点Q在边CA上运动时,求能使△BCQ成为等腰三角形的运动时间.
22.如图,已知AB=12,AB⊥BC于B,AB⊥AD于A,AD=5,BC=10.点E是CD的中点,求AE的长.
23.如图,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD,
(1)求证:△BCE≌△DCF;
(2)若AB=21,AD=9,BC=CD=10,求AC的长.
24.(1)我国著名的数学家赵爽,早在公元3世纪,就把一个矩形分成四个全等的直角三角形,用四个全等的直角三角形拼成了一个大的正方形(如图1),这个矩形称为赵爽弦图,验证了一个非常重要的结论:在直角三角形中两直角边a、b与斜边c满足关系式a2+b2=c2,称为勾股定理.
证明:∵大正方形面积表示为S=c2,又可表示为S=4×ab+(b﹣a)2,
∴4×ab+(b﹣a)2=c2.
∴
即直角三角形两直角边的平方和等于斜边的平方.
(2)爱动脑筋的小明把这四个全等的直角三角形拼成了另一个大的正方形(如图2),也能验证这个结论,请你帮助小明完成验证的过程.
(3)如图3所示,∠ABC=∠ACE=90°,请你添加适当的辅助线,证明结论a2+b2=c2.
参考答案
1.解:如图:将圆柱展开,EG为上底面圆周长的一半,
作A关于E的对称点A',连接A'B交EG于F,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF的长,即AF+BF=A'B=20cm,
延长BG,过A'作A'D⊥BG于D,
∵AE=A'E=DG=4cm,
∴BD=16cm,
Rt△A'DB中,由勾股定理得:A'D=12cm,
∴则该圆柱底面周长为24cm.
故选:D.
2.解:A、32+22≠42,不能构成直角三角形,故错误;
B、32+42=52,能构成直角三角形,故正确;
C、62+72≠82,不能构成直角三角形,故错误;
D、32+32≠42,不能构成直角三角形,故错误.
故选:B.
3.解:化简(a+b)2=c2+2ab,得,a2+b2=c2所以三角形是直角三角形,
故选:C.
4.解:A、根据三角形内角和公式,求得各角分别为30°,60°,90°,所以此三角形是直角三角形;
B、三边符合勾股定理的逆定理,所以其是直角三角形;
C、32+42=52,符合勾股定理的逆定理,所以是直角三角形;
D、根据三角形内角和公式,求得各角分别为45°,60°,75°,所以此三角形不是直角三角形;
故选:D.
5.解:过A点作AF⊥BC于F,连接AP,
∵△ABC中,AB=AC=5,BC=8,
∴BF=4,
∴△ABF中,AF=3,
∴×8×3=×5×PD+×5×PE,
12=×5×(PD+PE)
PD+PE=4.8.
故选:A.
6.解:(1)∵a2+b2=c2,∴S1+S2=S3.
(2)S1=a2,S2=b2,S3=c2,
∵a2+b2=c2,
∴a2+b2=c2,
∴S1+S2=S3.
(3)S1=a2,S2=b2,S3=c2,
∵a2+b2=c2,
∴a2+b2=c2,
∴S1+S2=S3.
(4)S1=a2,S2=b2,S3=c2,
∵a2+b2=c2,
∴S1+S2=S3.
综上,可得
面积关系满足S1+S2=S3的图形有4个.
故选:D.
7.解:将此长方形折叠,使点B与点D重合,∴BE=ED.
∵AD=9cm=AE+DE=AE+BE.
∴BE=9﹣AE,
根据勾股定理可知AB2+AE2=BE2.
解得AE=4.
∴△ABE的面积为3×4÷2=6.故选:C.
8.解:A、∵+c2+ab=(a+b)(a+b),
∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;
B、∵4×+c2=(a+b)2,
∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;
C、∵4×+(b﹣a)2=c2,
∴整理得:a2+b2=c2,即能证明勾股定理,故本选项不符合题意;
D、根据图形不能证明勾股定理,故本选项符合题意;
故选:D.
9.解:由题可得,3=22﹣1,4=2×2,5=22+1,……
∴a=n2﹣1,b=2n,c=n2+1,
∴当c=n2+1=65时,n=8,
∴x=63,y=16,
∴x+y=79,
故选:C.
10.解:设旗杆高度为x,则AC=AD=x,AB=(x﹣2)m,BC=8m,
在Rt△ABC中,AB2+BC2=AC2,即(x﹣2)2+82=x2,
解得:x=17,
即旗杆的高度为17米.
故选:D.
11.解:a的最小长度显然是圆柱的高12,最大长度根据勾股定理,得:=13.
即a的取值范围是12≤a≤13.
故选:A.
12.解:将长方体展开,连接A、B′,
∵AA′=1+3+1+3=8(cm),A′B′=6cm,
根据两点之间线段最短,AB′=10cm.
故答案为:10.
13.解:①当第三边为斜边时,第三边平方=41;
②当边长为5的边为斜边时,第三边平方=9.
14.解:设AB为3xcm,BC为4xcm,AC为5xcm,
∵周长为36cm,
AB+BC+AC=36cm,
∴3x+4x+5x=36,
解得x=3,
∴AB=9cm,BC=12cm,AC=15cm,
∵AB2+BC2=AC2,
∴△ABC是直角三角形,
过3秒时,BP=9﹣3×1=6(cm),BQ=2×3=6(cm),
∴S△PBQ=BP BQ=×(9﹣3)×6=18(cm2).
故答案为:18.
15.解:连接AD,
由勾股定理得:AD2=12+32=10,CD2=12+32=10,AC2=22+42=20,
∴AD=CD,AD2+CD2=AC2,
∴∠ADC=90°,
∴∠DAC=∠ACD=45°,
∵AB∥DE,
∴∠BAD+∠ADE=180°,
∴∠BAC+∠CDE=180°﹣90°﹣45°=45°,
故答案为:45°.
16.
解:观察发现,
∵AB=BE,∠ACB=∠BDE=90°,
∴∠ABC+∠BAC=90°,∠ABC+∠EBD=90°,
∴∠BAC=∠EBD,
∴△ABC≌△BDE(AAS),
∴BC=ED,
∵AB2=AC2+BC2,
∴AB2=AC2+ED2=S1+S2,
即S1+S2=1,
同理S3+S4=3.
则S1+S2+S3+S4=1+3=4.
故答案为:4.
17.解:由折叠的性质知:AD=AF,DE=EF=8﹣3=5;
在Rt△CEF中,EF=DE=5,CE=3,由勾股定理可得:CF=4,
若设AD=AF=x,则BC=x,BF=x﹣4;
在Rt△ABF中,由勾股定理可得:
82+(x﹣4)2=x2,解得x=10,
故BF=x﹣4=6.
故答案为:6.
18.解:(1)OD是等腰三角形的底边时,P就是OD的垂直平分线与CB的交点,此时OP=PD≠5;
(2)OD是等腰三角形的一条腰时:
①若点O是顶角顶点时,P点就是以点O为圆心,以5为半径的弧与CB的交点,
在直角△OPC中,CP=3,则P的坐标是(3,4).
②若D是顶角顶点时,P点就是以点D为圆心,以5为半径的弧与CB的交点,
过D作DM⊥BC于点M,
在直角△PDM中,PM=3,
当P在M的左边时,CP=5﹣3=2,则P的坐标是(2,4);
当P在M的右侧时,CP=5+3=8,则P的坐标是(8,4).
故P的坐标为:(3,4)或(2,4)或(8,4).
故答案为:(3,4)或(2,4)或(8,4).
19.解:由题意得,OP12=2;
OP22=3;
OP32=4,
…
则OP20202=2021,OPn2=n+1,
故答案为:;.
20.解:过点B作BF⊥AD于点F,
设砌墙砖块的厚度为xcm,则BE=2xcm,则AD=3xcm,
∵∠ACB=90°,
∴∠ACD+∠ECB=90°,
∵∠ECB+∠CBE=90°,
∴∠ACD=∠CBE,
在△ACD和△CEB中,
,
∴△ACD≌△CEB(AAS),
∴AD=CE,CD=BE,
∴DE=5x,AF=AD﹣BE=x,
∴在Rt△AFB中,
AF2+BF2=AB2,
∴25x2+x2=416,
解得;x=4.
故答案为:4.
21.解:(1)∵BQ=2×2=4(cm),BP=AB﹣AP=16﹣2×1=14(cm ),∠B=90°,
∴PQ2=212
(2)BQ=2t,BP=16﹣t,
根据题意得:2t=16﹣t,
解得:t=,
即出发秒钟后,△PQB能形成等腰三角形;
(3)①当CQ=BQ时,如图1所示,
则∠C=∠CBQ,
∵∠ABC=90°,
∴∠CBQ+∠ABQ=90°.
∠A+∠C=90°,
∴∠A=∠ABQ,
∴BQ=AQ,
∴CQ=AQ=10,
∴BC+CQ=22,
∴t=22÷2=11秒.
②当CQ=BC时,如图2所示,
则BC+CQ=24,
∴t=24÷2=12秒.
③当BC=BQ时,如图3所示,
过B点作BE⊥AC于点E,
则BE==,
∴CE=,
∴CQ=2CE=14.4,
∴BC+CQ=26.4,
∴t=26.4÷2=13.2秒.
综上所述:当t为11秒或12秒或13.2秒时,△BCQ为等腰三角形.
22.解:如图,延长AE交BC于F.
∵AB⊥BC,AB⊥AD,
∴AD∥BC
∴∠D=∠C,∠DAE=∠CFE,
又∵点E是CD的中点,
∴DE=CE.
∵在△AED与△FEC中,
,
∴△AED≌△FEC(AAS),
∴AE=FE,AD=FC.
∵AD=5,BC=10.
∴BF=5
在Rt△ABF中,AF=13,
∴AE=AF=6.5.
23.(1)证明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,
∴∠CFD=90°,∠CEB=90°(垂线的意义)
CE=CF(角平分线的性质)
∵BC=CD(已知)
∴Rt△BCE≌Rt△DCF(HL)
(2)解:由(1)得,
Rt△BCE≌Rt△DCF
∴DF=EB,设DF=EB=X
∵∠CFD=90°,∠CEB=90°,
CE=CF,AC=AC
∴Rt△AFC≌Rt△AEC(HL)
∴AF=AE
即:AD+DF=AB﹣BE
∵AB=21,AD=9,DF=EB=x
∴9+x=21﹣x解得,x=6
在Rt△DCF中,∵DF=6,CD=10
∴CF=8
∴Rt△AFC中,AC2=CF2+AF2=82+(9+6)2=289
∴AC=17
答:AC的长为17.
24.证明:(1)∵大正方形面积表示为S=c2,又可表示为S=4×ab+(b﹣a)2,
∴4×ab+(b﹣a)2=c2.
∴2ab+b2﹣2ab+a2=c2,
∴a2+b2=c2,
即直角三角形两直角边的平方和等于斜边的平方.
故答案为:a2+b2=c2;
(2)证明:由图得,大正方形面积=×ab×4+c2=(a+b)×(a+b),
整理得,2ab+c2=a2+b2+2ab,
即a2+b2=c2;
(3)如图3,过A作AF⊥AB,过E作EF⊥AF于F,交BC的延长线于D,则四边形ABDF是矩形,
∵△ACE是等腰直角三角形,
∴AC=CE=c,∠ACE=90°=∠ACB+∠ECD,
∵∠ACB+∠BAC=90°,
∴∠BAC=∠ECD,
∵∠B=∠D=90°,
∴△ABC≌△CDE(AAS),
∴CD=AB=b,DE=BC=a,
S矩形ABDF=b(a+b)=2×ab++,
∴a2+b2=c2.