一元一次方程—追赶小明专题训练D
姓名:___________班级:___________
一、选择题
1.小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是( )
A.30斤 B.25斤 C.20斤 D.15斤
2.小明从家里骑自行车到学校,每小时骑15km,可早到10分钟,每小时骑12km就会迟到5分钟.问他家到学校的路程是多少km?设他家到学校的路程是xkm,则据题意列出的方程是( )
A. B.
C. D.
3.小刚、小强两人练习赛跑,小刚每秒跑7米,小强每秒跑6.5米,小刚让小强先跑5米,设x秒钟后,小刚追上小强,下列四个方程中不正确的是( )
A.7x=6.5x+5 B.7x﹣5=6.5 C.(7﹣6.5)x=5 D.6.5x=7x﹣5
4.船在静水中的速度为36千米/时,水流速度为4千米/时,从甲码头到乙码头再返回甲码头,共用了9小时(中途不停留),设甲、乙两码头的距离为千米,则下面所列方程正确的是( )
A. B.
C. D.
5.一艘船从甲码头到乙码头顺流而行,全程需7个小时,逆流航行全程需要9小时,已知水流速度为每小时3千米.若设两个码头间的路程为x千米,则所列方程为( )
A. B.
C. D.
6.一项工程,甲单独做5天完成,乙单独做8天完成.若甲先做1天,然后甲、乙合作完成此项工作的.若设甲一共做了x天,则所列方程为( )
A. B. C. D.
7.甲、乙两地相距1500千米.飞机从甲地到乙地是顺风,需2小时;从乙地返回甲地是逆风,需2.5小时.则飞机往返的平均速度是( )千米/时.
A.700 B. C.675 D.650
8.一套仪器由1个A部件和3个B部件构成,1立方米钢材可做40个A部件或240个B部件,现要用6立方米钢材制作这种仪器,设应用x立方米钢材做B部件,其他钢材做A部件,恰好配套,则可列方程为( )
A. B.
C. D.
9.某地居民生活用水收费标准:每月用水量不超过17立方米,每立方米元;超过部分每立方米元.该地区某用户上月用水量为20立方米,则应缴水费为( )
A.元 B.元 C.元 D.元
10.如图,跑道由两个半圆部分,和两条直跑道,组成,两个半圆跑道的长都是115,两条直跑道的长都是85.小斌站在处,小强站在处,两人同时逆时针方向跑步,小斌每秒跑4,小强每秒跑6.当小强第一次追上小斌时,他们的位置在( )
A.半圆跑道上 B.直跑道上
C.半圆跑道上 D.直跑道上
11.某种仪器由1个部件和1个部件配套构成.每个工人每天可以加工部件100个或者加工部件60个,现有工人16名,应怎样安排人力,才能使每天生产的部件和部件配套?设安排个人生产A部件,安排个人生产B部件则列出二元一次方程组为( )
A. B. C. D.
12.某班组每天需生产50个零件才能在规定的时间内完成一批零件任务,实际上该班组每天比计划多生产了6个零件,结果比规定的时间提前3天并超额生产120个零件,若设该班组要完成的零件任务为x个,则可列方程为( )
A.=3 B.=3
C. D.
13.如图,已知正六边形ABCDEF,甲、乙两点分别从顶点A和顶点B出发,沿正六边形ABCDEF的边逆时针运动,甲的速度是乙速度的3倍,则点甲、乙的第2018次相遇在( )
A.边BC B.边CD C.边DE D.边EF
14.从甲地到乙地,某人步行比乘公交车多用小时,已知步行速度为每小时千米,公交车的速度为每小时千米,设甲乙两地相距千米,可列方程( )
A. B. C. D.
15.中国古代问题:有甲、乙两个牧童,甲对乙说:“把你的羊给我一只,我的羊数就是你的羊数的2倍”.乙回答说:“最好还是把你的羊给我一只,我们羊数就一样了”.若设甲有x只羊,则下列方程正确的是( )
A.x+1=2(x﹣2) B.x+3=2(x﹣1)
C.x+1=2(x﹣3) D.
二、填空题
16.甲船从码头出发顺流驶向码头,同时乙船从码头出发逆流驶向码头,甲,乙两船到达,两码头后立即返回,乙船返回后行驶20千米与返回的甲船相遇,甲,乙两船在静水中的平均速度不变,,两码头间的水流速度为4千米/时,甲船逆流而行的速度与乙船顺流而行的速度相等,甲船顺流而行速度是乙船逆流而行速度的2倍,则,两码头间的路程为_______千米.
17.一张试卷只有25道选择题,做对一题得4分,未做或做错一题倒扣1分,某同学做了全部试题共得85分,他做对了________道题.
18.甲、乙两人在400 m环形跑道上练习跑步,甲的速度是5m/s,乙的速度是7m/s.两人站在同一起点,同时同向出发,那么当乙第一次恰好追上甲时,甲跑了________m.
19.中国古代数学著作《算法统宗》中有这样一段记载:“三百七十八里关,初键步不为难,次日脚痛减一半,六朝才得到其关”其大意是:“有人要去某关口,路程378里,第一天键步行走,第二天起,由于脚痛,每天走的路程都为前一天的一半,一共走了六天才到达目的地,”则此人第六天走的路程为________________
20.某采石场爆破时,点燃导火线的甲工人要在爆破前转移到400米以外的安全区域.甲工人在转移过程中,前40米只能步行,之后骑自行车.已知导火线燃烧的速度为0.01米/秒,甲工人步行的速度为1米/秒,骑车的速度为4米/秒.为了确保甲工人的安全,则导火线的长要大于_____米.
21.一个两位数,个位数字与十位数字的和是9,如果将个位数字与十位数字对调后所得的新数比原数大9,则原来的两位数是____.
三、解答题
22.《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.
23.家具厂制作一张桌子需要一个桌面和3条桌腿,1立方米木材可制作20个桌面,或者制作360条桌腿,现有7立方米木材,应该用多少立方米木材生产桌面,才能使所有木材生产出的桌面与桌腿正好配套?
24.光华中学库存若干套桌椅,准备修理后支援贫困山区学校.现有甲、乙两修理组,甲修理组单独完成任务需要12天,乙修理组单独完成任务需要24天.
(1)若由甲、乙两修理组同时修理,需多少天可以修好这些套桌椅?
(2)若甲、乙两修理组合作3天后,甲修理组因新任务离开,乙修理组继续工作.甲完 成新任务后,回库与乙又合作3天,恰好完成任务.问:甲修理组离开几天?
(3)学校需要每天支付甲修理组、乙修理组修理费分别为80元,120元.任务完成后, 两修理组收到的总费用为1920元,求甲修理组修理了几天?
25.如图,将一条数轴在原点和点处各折一下,得到一条“折线数轴”,图中点表示-12,点表示10,点表示20,我们称点和点在数轴上相距32个长度单位.动点从点出发,以2单位/秒的速度沿着“折线数轴”的正方向运动,从点运动到点期间速度变为原来的一半,之后立刻恢复原速;同时,动点从点出发,以1单位/秒的速度沿着折线数轴的负方向运动,从点运动到点期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为秒.则:
(1)动点从点运动至点需要时间多少秒?
(2)若,两点在点处相遇,则点在折线数轴上所表示的数是多少?
(3)求当为何值时,、两点在数轴上相距的长度与、两点在数轴上相距的长度相等.
参考答案
1-5:AABDA 6-10:BBDDD 11-15:AADCC
16.160 17.22 18.1000 19.6 20.1.3 21.45.
22.城中有75户人家.
23.用6立方米木材生产桌面
24.(1)需8天可以修好这些套桌椅;(2)甲修理组离开6天;(3)甲修理组修理了6天.
25.(1)21;(2)6;(3)当时,.