一元二次方程整章导学案

文档属性

名称 一元二次方程整章导学案
格式 zip
文件大小 285.7KB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2012-09-05 11:36:05

图片预览

文档简介

第二十二章 一元二次方程
第1课时 22.1 一元二次方程
教学内容
一元二次方程概念及一元二次方程一般式及有关概念.
一、探究 学生活动:列方程.
问题(1)古算趣题:“执竿进屋”
笨人执竿要进屋,无奈门框拦住竹,横多四尺竖多二,没法急得放声哭。
有个邻居聪明者,教他斜竿对两角,笨伯依言试一试,不多不少刚抵足。
借问竿长多少数,谁人算出我佩服。
如果假设门的高为x尺,那么,这个门的宽为_______尺,长为_______尺,
根据题意,得________. 整理、化简,得:__________.
问题(2)如图,如果,那么点C叫做线段AB的黄金分割点.
如果假设AB=1,AC=x,那么BC=________,根据题意,得:________.
整理得:_________.
问题(3)有一面积为54m2的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,那么这个正方形的边长是多少?
如果假设剪后的正方形边长为x,那么原来长方形长是________,宽是_____,根据题意,得:_______.整理,得:________.
二、归纳
因此,像这样的方程两边都是整式,只含有一个未知数(一元),并且未知数的最高次数是2(二次)的方程,叫做一元二次方程.
一般地,任何一个关于x的一元二次方程,经过整理,都能化成如下形式ax2+bx+c=0(a≠0).这种形式叫做一元二次方程的一般形式.
一个一元二次方程经过整理化成ax2+bx+c=0(a≠0)后,其中ax2是二次项,a是二次项系数;bx是一次项,b是一次项系数;c是常数项.
例1.将方程3x(x-1)=5(x+2)化成一元二次方程的一般形式,并写出其中的二次项系数、一次项系数及常数项.
例2. 将方程(x+1)2+(x-2)(x+2)=1化成一元二次方程的一般形式,并写出其中的二次项、二次项系数;一次项、一次项系数;常数项.
三、巩固练习
1.方程(x+3)(x+4)=5,化成一般形式是________.
2.若方程kx2+x=3x2+1是一元二次方程,则k的取值范围是_________.
3.已知方程x2-x-m=0有整数根,则整数m=________.(填上一个你认为正确的答案)
4.根据题意列出方程:有一面积为54m2(设正方形的边长为m)的长方形,将它的一边剪短5m,另一边剪短2m,恰好变成一个正方形,这个正方形的边长是多少?设正方形的边长为xm,请列出你求解的方程__________.
5.如果两个连续奇数的和是323,求这两个数,如果设其中一个奇数为x,你能列出求解x的方程吗?______________.
6.如图,在宽为20m,长30m的矩形场地上,修筑同样宽的两条道路,余下的部分作为耕地,要使耕地的面积为500m2,若设路宽为xm,则可列方程为:_________.
7.如果关于x的方程(m-3)-x+3=0是关于x的一元二次方程,那么m的值为( ) A.±3 B.3 C.-3 D.都不对
8.以-2为根的一元二次方程是( )
A.x2+2x-x=0 B.x2-x-2=0 C.x2+x+2=0 D.x2+x-2=0
9.若ax2-5x+3=0是一元二次方程,则不等式3a+6>0的解集是( )
A.a>-2 B.a<-2 C.a>-2且a≠0 D.a>
10.生物兴趣小组的同学,将自己收集的标本向本组其他成员各赠送一件,全组共互赠了182件,如果全组有x名同学,则根据题意列出的方程是( )
A.x(x+1)=182 B.x(x-1)=182 C.2x(x+1)=182 D.x(x-1)=182×2
作业:
1.若关于x的方程(m+3)+(m-5)x+5=0是一元二次方程,试求m的值,并计算这个方程的各项系数之和.
2.求方程x2+3=2x-4的二次项系数,一次项系数及常数项的积.
3.若关于x的方程(k2-4)x2+x+5=0是一元二次方程,求k的取值范围.
4.若α是方程x2-5x+1=0的一个根,求α2+的值.
聚焦中考
1.关于的一元二次方程的一个根为1,则实数的值是( )
A. B.或 C. D.
2.一个三角形的两边长为3和6,第三边的边长是方程的根,则这个三角形的周长是(  )A.11 B.11或13 C.13 D.11和13
3.如图,在宽为20m,长为32m的矩形地面上修筑同样宽的道路(图中阴影部分),
余下的部分种上草坪.要使草坪的面积为,
求道路的宽.(部分参考数据:,,)
补充练习:判断下列方程是否为一元二次方程?
(1)3x+2=5y-3 (2) x2=4 (3) 3x2-=0 (4) x2-4=(x+2) 2 (5) ax2+bx+c=0
四、应用拓展
例3.求证:关于x的方程(m2-8m+17)x2+2mx+1=0,不论m取何值,该方程都是一元二次方程.
分析:要证明不论m取何值,该方程都是一元二次方程,只要证明m2-8m+17≠0即可.
证明:m2-8m+17=(m-4)2+1
∵(m-4)2≥0
∴(m-4)2+1>0,即(m-4)2+1≠0
∴不论m取何值,该方程都是一元二次方程.
练习: 1.方程(2a—4)x2—2bx+a=0, 在什么条件下此方程为一元二次方程?在什么条件下此方程为一元一次方程?
2.当m为何值时,方程(m+1)x/4m/-4+27mx+5=0是关于的一元二次方程
五、 课后作业
一、选择题
1.在下列方程中,一元二次方程的个数是( ).
①3x2+7=0 ②ax2+bx+c=0 ③(x-2)(x+5)=x2-1 ④3x2-=0
A.1个 B.2个 C.3个 D.4个
2.方程2x2=3(x-6)化为一般形式后二次项系数、一次项系数和常数项分别为( ).
A.2,3,-6 B.2,-3,18 C.2,-3,6 D.2,3,6
3.px2-3x+p2-q=0是关于x的一元二次方程,则( ).
A.p=1 B.p>0 C.p≠0 D.p为任意实数
二、填空题
1.方程3x2-3=2x+1的二次项系数为________,一次项系数为_________,常数项为_________.
2.一元二次方程的一般形式是__________.
3.关于x的方程(a-1)x2+3x=0是一元二次方程,则a的取值范围是________.
三、综合提高题
1.a满足什么条件时,关于x的方程a(x2+x)=x-(x+1)是一元二次方程?
2.关于x的方程(2m2+m)xm+1+3x=6可能是一元二次方程吗?为什么?
3.一块矩形铁片,面积为1m2,长比宽多3m,求铁片的长,小明在做这道题时,是这样做的:
x 1 2 3 4
x2-3x-1 -3 -3
设铁片的长为x,列出的方程为x(x-3)=1,整理得:x2-3x-1=0.小明列出方程后,想知道铁片的长到底是多少,下面是他的探索过程:
第一步:
所以,________x 3.1 3.2 3.3 3.4
x2-3x-1 -0.96 -0.36
第二步:
所以,________(1)请你帮小明填完空格,完成他未完成的部分;
(2)通过以上探索,估计出矩形铁片的整数部分为_______,十分位为______.
第2课时 22.1 一元二次方程
教学内容:一元二次方程根的概念;
一、探索新知
问题1.前面有关“执竿进屋”的问题中,我们列得方程x2-8x+20=0
列表:
x 1 2 3 4 5 6 7 8 9 10 11 …
x2-8x+20 …
问题2.前面有关长方形的面积的问题中,我们列得方程x2+7x-44=0即x2+7x=44
x 1 2 3 4 5 6 …
x2+7x …
列表:
二、归纳 提问:(1)问题1中一元二次方程的解是多少?问题2中一元二次方程的解是多少?
(2)如果抛开实际问题,问题2中还有其它解吗?
老师点评:(1)问题1中x=2与x=10是x2-8x+20=0的解,问题2中,x=4是x2+7x-44=0的解.(2)如果抛开实际问题,问题2中还有x=-11的解.
一元二次方程的解也叫做一元二次方程的根.
回过头来看:x2-8x+20=0有两个根,一个是2,另一个是10,都满足题意;但是,问题2中的x=-11的根不满足题意.因此,由实际问题列出方程并解得的根,并不一定是实际问题的根,还要考虑这些根是否确实是实际问题的解.
例1.下面哪些数是方程2x2+10x+12=0的根?
-4,-3,-2,-1,0,1,2,3,4.
分析:要判定一个数是否是方程的根,只要把其代入等式,使等式两边相等即可.
解:将上面的这些数代入后,只有-2和-3满足方程的等式,所以x=-2或x=-3是一元二次方程2x2+10x+12=0的两根.
例2.若x=1是关于x的一元二次方程a x2+bx+c=0(a≠0)的一个根,求代数式2007(a+b+c)的值
练习:关于x的一元二次方程(a-1) x2+x+a 2-1=0的一个根为0,则求a的值
例3.你能用以前所学的知识求出下列方程的根吗?
(1)x2-64=0 (2)3x2-6=0 (3)x2-3x=0
三、巩固练习 教材P33 思考题 练习1、2.
四、应用拓展
例3.要剪一块面积为150cm2的长方形铁片,使它的长比宽多5cm,这块铁片应该怎样剪?
设长为xcm,则宽为(x-5)cm
列方程x(x-5)=150,即x2-5x-150=0
请根据列方程回答以下问题:(1)x可能小于5吗?可能等于10吗?说说你的理由.
(2)完成下表:
x 10 11 12 13 14 15 16 17 …
x2-5x-150
(3)你知道铁片的长x是多少吗?
分析:x2-5x-150=0与上面两道例题明显不同,不能用平方根的意义和八年级上册的整式中的分解因式的方法去求根,但是我们可以用一种新的方法──“夹逼”方法求出该方程的根.
解:(1)x不可能小于5.理由:如果x<5,则宽(x-5)<0,不合题意.
x不可能等于10.理由:如果x=10,则面积x2-5x-150=-100,也不可能.
x 10 11 12 13 14 15 16 17 ……
x2-5x-150 -100 -84 -66 -46 -24 0 26 54 ……
(2)
(3)铁片长x=15cm
五、归纳小结 (1)一元二次方程根的概念;
(2)要会判断一个数是否是一元二次方程的根;
(3)要会用一些方法求一元二次方程的根.(“夹逼”方法; 平方根的意义)
六、作业
一、选择题
1.方程x(x-1)=2的两根为( ). A.x1=0,x2=1B.x1=0,x2=-1C.x1=1,x2=2 D.x1=-1,x2=2
2.方程ax(x-b)+(b-x)=0的根是( ).
A.x1=b,x2=a B.x1=b,x2= C.x1=a,x2= D.x1=a2,x2=b2
3.已知x=-1是方程ax2+bx+c=0的根(b≠0),则=( ). A.1 B.-1 C.0 D.2
二、填空题
1.如果x2-81=0,那么x2-81=0的两个根分别是x1=________,x2=__________.
2.已知方程5x2+mx-6=0的一个根是x=3,则m的值为________.
3.方程(x+1)2+x(x+1)=0,那么方程的根x1=______;x2=________.
三、综合提高题
1.如果x=1是方程ax2+bx+3=0的一个根,求(a-b)2+4ab的值.
2.如果关于x的一元二次方程ax2+bx+c=0(a≠0)中的二次项系数与常数项之和等于一次项系数,求证:-1必是该方程的一个根.
3.在一次数学课外活动中,小明给全班同学演示了一个有趣的变形,即在()2-2x+1=0,令=y,则有y2-2y+1=0,根据上述变形数学思想(换元法),解决小明给出的问题:在(x2-1)2+(x2-1)=0中,求出(x2-1)2+(x2-1)=0的根.
第3课时 22.2.1 直接开平方法
教学内容
运用直接开平方法,即根据平方根的意义把一个一元二次方程“降次”,转化为两个一元一次方程.
重难点关键
1.重点:运用开平方法解形如(x+m)2=n(n≥0)的方程;领会降次──转化的数学思想.
2.难点与关键:通过根据平方根的意义解形如x2=n,知识迁移到根据平方根的意义解形如(x+m)2=n(n≥0)的方程.
教学过程
一、复习引入 问题1.填空(1)x2-8x+______=(x-______)2;(2)9x2+12x+_____=(3x+_____)2;(3)x2+px+_____=(x+______)2.
问题2:目前我们都学过哪些方程 二元怎样转化成一元?一元二次方程于一元一次方程有什么不同?二次如何转化成一次?怎样降次?以前学过哪些降次的方法?
二、探索新知
上面我们已经讲了x2=9,根据平方根的意义,直接开平方得x=±3,如果x换元为2t+1,即(2t+1)2=9,能否也用直接开平方的方法求解呢?
(学生分组讨论)
老师点评:回答是肯定的,把2t+1变为上面的x,那么2t+1=±3
即2t+1=3,2t+1=-3
方程的两根为t1=1,t2=--2
例1:解方程:(1)(2x-1) 2=5 (2)x 2+6x+9=2 (3)x 2-2x+4=-1
例2.市政府计划2年内将人均住房面积由现在的10m2提高到14.4m,求每年人均住房面积增长率.
三、巩固练习
1.若8x2-16=0,则x的值是_________.
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______.
4.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2
5.方程3x2+9=0的根为( ).
A.3 B.-3 C.±3 D.无实数根
6.解下列方程
(1)x2-7=0      (2)3x2-5=0 (3)4x2-4x+1=0    (4)(2x-5)2-2=0;
(5)(x-2)2=49 (6)x2-2x+1=25. (7)
聚焦中考
11.(2006.温州)方程x 2-9=0的解是(  )
A.xl=x2=3 B. xl=x2=9 C.xl=3,x2=-3 D. xl=9,x2=-9
12.(2006.沈阳)某工程队再我市实施棚户区改造过程中承包了一项拆迁工程。原计划每天拆迁1250m2,因为准备工作不足,第一天少拆迁了20%。从第二天开始,该工程队加快了拆迁速度,第三天拆迁了1440m2。
求:(1)该工程队第一天拆迁的面积;
(2)若该工程队第二天、第三天每天的拆迁面积比前一天增加的百分数相同,求这个百分数。
补充题:如图,在△ABC中,∠B=90°,点P从点B开始,沿AB边向点B以1cm/s的速度移动,点Q从点B开始,沿BC边向点C以2cm/s的速度移动,如果AB=6cm,BC=12cm,P、Q都从B点同时出发,几秒后△PBQ的面积等于8cm2?
四、应用拓展
例3.某公司一月份营业额为1万元,第一季度总营业额为3.31万元,求该公司二、三月份营业额平均增长率是多少?
五、归纳小结 本节课应掌握: 由应用直接开平方法解形如x2=p(p≥0),那么x=±转化为应用直接开平方法解形如(mx+n)2=p(p≥0),那么mx+n=±,达到降次转化之目的.若p<0则方程无解
六、作业
一、选择题
1.若x2-4x+p=(x+q)2,那么p、q的值分别是( ).
A.p=4,q=2 B.p=4,q=-2 C.p=-4,q=2 D.p=-4,q=-2
2.方程3x2+9=0的根为( ). A.3 B.-3 C.±3 D.无实数根
3.用配方法解方程x2-x+1=0正确的解法是( ).
A.(x-)2=,x=± B.(x-)2=-,原方程无解
C.(x-)2=,x1=+,x2= D.(x-)2=1,x1=,x2=-
二、填空题
1.若8x2-16=0,则x的值是_________.
2.如果方程2(x-3)2=72,那么,这个一元二次方程的两根是________.
3.如果a、b为实数,满足+b2-12b+36=0,那么ab的值是_______.
三、综合提高题
1.解关于x的方程(x+m)2=n.
2.某农场要建一个长方形的养鸡场,鸡场的一边靠墙(墙长25m),另三边用木栏围成,木栏长40m.
(1)鸡场的面积能达到180m2吗?能达到200m吗?
(2)鸡场的面积能达到210m2吗?
3.在一次手工制作中,某同学准备了一根长4米的铁丝,由于需要,现在要制成一个矩形方框,并且要使面积尽可能大,你能帮助这名同学制成方框,并说明你制作的理由吗?
第4课时 22.2.2 配方法(1)
教学内容
间接即通过变形运用开平方法降次解方程.
一、复习引入
(学生活动)请同学们解下列方程
(1)3x2-1=5 (2)4(x-1)2-9=0 (3)4x2+16x+16=9 (4) 4x2+16x=-7
老师点评:上面的方程都能化成x2=p或(mx+n)2=p(p≥0)的形式,那么可得
x=±或mx+n=±(p≥0).
如:4x2+16x+16=(2x+4)2 ,你能把4x2+16x=-7化成(2x+4)2=9吗
二、归纳 问题2:要使一块矩形场地的长比宽多6m,并且面积为16m2,场地的长和宽各是多少?
(1)列出的经化简为一般形式的方程与前面讲的三道题不同之处是:前三个左边是含有x的完全平方式而后二个不具有.
(2)不能.
既然不能直接降次解方程,那么,我们就应该设法把它转化为可直接降次解方程的方程,下面,我们就来讲如何转化:
x2+6x-16=0移项→x2+6x=16
两边加(6/2)2使左边配成x2+2bx+b2的形式 → x2+6x+32=16+9
左边写成平方形式 → (x+3)2=25 降次→x+3=±5 即 x+3=5或x+3=-5
解一次方程→x1=2,x2= -8
可以验证:x1=2,x2= -8都是方程的根,但场地的宽不能使负值,所以场地的宽为2m,常为8m.
像上面的解题方法,通过配成完全平方形式来解一元二次方程的方法,叫配方法.
可以看出,配方法是为了降次,把一个一元二次方程转化为两个一元一次方程来解.
例1.用配方法解下列关于x的方程
(1)x2-8x+1=0 (2)x2-2x-=0 (3)2x2-3x+1=0; (4)y2+4y-2=0;
三、巩固练习
1.用适当的数填空:
(1)x2-3x+________=(x-_______)2
(2)a(x2+x+_______)=a(x+_______)2
2.将一元二次方程x2-2x-4=0用配方法化成(x+a)2=b的形式为_______,所以方程的根为_________.
3.如果关于x的方程x2+kx+3=0有一个根是-1,那么k=________,另一根为______.
4.将二次三项式2x2-3x-5进行配方,其结果为_________.
5.已知4x2-ax+1可变为(2x-b)2的形式,则ab=_______.
6.若x2+6x+m2是一个完全平方式,则m的值是( )
A.3 B.-3 C.±3 D.以上都不对
7.用配方法将二次三项式a2-4a+5变形,结果是( )
A.(a-2)2+1 B.(a+2)2-1 C.(a+2)2+1 D.(a-2)2-1
8.用配方法解方程x2+4x=10的根为( )
A.2± B.-2± C.-2+ D.2-
9.解下列方程:
(1)x2+8x=9 (2)6x2+7x-3=0 (3)4x-5x2=-1; (4)y(y-2)=3;
(5)(2x+1)(x-3)=-6x; (6)
能力提升
10.不论x、y为什么实数,代数式x2+y2+2x-4y+7的值( )
A.总不小于2 B.总不小于7 C.可为任何实数 D.可能为负数
11.用配方法求解下列问题.(1)2x2-7x+2的最小值 (2)-3x2+5x+1的最大值
12.试说明:不论x、y取何值,代数式4x2+y2-4x+6y+11的值总是正数.你能求出当x、y取何值时,这个代数式的值最小吗?
13.如图,在矩形ABCD中,AB=6cm,BC=12cm,点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A、B同时出发,问几秒钟时△PBQ的面积等于8cm.
聚焦中考
14.用配方法解方程:
15.用配方法解一元二次方程,配方后得到的方程是(   )
A   B   C   D 
16.将一元二次方程化成的形式,则b等于(   )
A -4   B 4   C -14   D 14
17.(2006。杭州)已知方程可以配方成的形式,那么可以配方成下列的AB. C. D.
18.(2006.安顺)某商场将进货价为每个30元的台灯以每个40元出售,平均每月能售出600个.经过调查表明:如果每个台灯的售价每上涨1元,那么其销售数量就将减少10个.为了实现平均每月10000元的销售利润,问每个台灯的售价应定为多少元?
四、应用拓展
例3.如图,在Rt△ACB中,∠C=90°,AC=8m,CB=6m,点P、Q同时由A,B两点出发分别沿AC、BC方向向点C匀速移动,它们的速度都是1m/s,几秒后△PCQ的面积为Rt△ACB面积的一半.
五、作业
一、选择题
1.将二次三项式x2-4x+1配方后得( )
A.(x-2)2+3 B.(x-2)2-3 C.(x+2)2+3 D.(x+2)2-3
2.已知x2-8x+15=0,左边化成含有x的完全平方形式,其中正确的是( ).
A.x2-8x+(-4)2=31 B.x2-8x+(-4)2=1 C.x2+8x+42=1 D.x2-4x+4=-11
3.如果mx2+2(3-2m)x+3m-2=0(m≠0)的左边是一个关于x的完全平方式,则m等于( ).
A.1 B.-1 C.1或9 D.-1或9
二、填空题
1.方程x2+4x-5=0的解是________.2.代数式的值为0,则x的值为________.
3.已知(x+y)(x+y+2)-8=0,求x+y的值,若设x+y=z,则原方程可变为_______,所以求出z的值即为x+y的值,所以x+y的值为______.
三、综合提高题
1.已知三角形两边长分别为2和4,第三边是方程x2-4x+3=0的解,求这个三角形的周长.
2.如果x2-4x+y2+6y++13=0,求(xy)z的值.
3.新华商场销售某种冰箱,每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降50元时,平均每天就能多售出4台,商场要想使这种冰箱的销售利润平均每天达5000元,每台冰箱的定价应为多少元?
第5课时 22.2.2 配方法(2)
教学内容
给出配方法的概念,然后运用配方法解一元二次方程.
2.难点与关键:把常数项移到方程右边后,两边加上的常数是一次项系数一半的平方.
一、复习引入
(学生活动)解下列方程:
(1)x2-4x+7=0 (2)2x2-8x+1=0
二、探索新知
讨论:配方法届一元二次方程的一般步骤:
(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
例1.解下列方程
(1)2x2+1=3x (2)3x2-6x+4=0 (3)(1+x)2+2(1+x)-4=0
三、巩固练习 教材P39 练习 2.(3)、(4)、(5)、(6).
四、应用拓展
例2.用配方法解方程(6x+7)2(3x+4)(x+1)=6
分析:因为如果展开(6x+7)2,那么方程就变得很复杂,如果把(6x+7)看为一个数y,那么(6x+7)2=y2,其它的3x+4=(6x+7)+,x+1=(6x+7)-,因此,方程就转化为y的方程,像这样的转化,我们把它称为换元法.
解:设6x+7=y
则3x+4=y+,x+1=y-
依题意,得:y2(y+)(y-)=6
去分母,得:y2(y+1)(y-1)=72
y2(y2-1)=72, y4-y2=72
(y2-)2=
y2-=±
y2=9或y2=-8(舍)
∴y=±3
当y=3时,6x+7=3 6x=-4 x=-
当y=-3时,6x+7=-3 6x=-10 x=-
所以,原方程的根为x1=-,x2=-
例3求证:无论y取何值时,代数式-3 y2+8y-6恒小于0.
五、归纳小结
本节课应掌握:
1.配方法的概念及用配方法解一元二次方程的步骤.
2.配方法是解一元二次方程的通法,它重要性,不仅仅表现在一元二次方程的解法中,也可通过配方,利用非负数的性质判断代数式的正负性(如例3)在今后学习二次函数,到高中学习二次曲线时,还将经常用到。
六、布置作业
1.教材P45 复习巩固3.(3)(4)
补充:(1)已知x2+y2+z2-2x+4y-6z+14=0,则求x+y+z的值
(2)求证:无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是正数
(3)用配方法求代数式的最小值.
2.作业设计
一、选择题
1.配方法解方程2x2-x-2=0应把它先变形为( ).
A.(x-)2= B.(x-)2=0 C.(x-)2= D.(x-)2=
2.下列方程中,一定有实数解的是( ).
A.x2+1=0 B.(2x+1)2=0 C.(2x+1)2+3=0 D.(x-a)2=a
3.已知x2+y2+z2-2x+4y-6z+14=0,则x+y+z的值是( ) A.1 B.2 C.-1 D.-2
二、填空题
1.如果x2+4x-5=0,则x=_______.
2.无论x、y取任何实数,多项式x2+y2-2x-4y+16的值总是_______数.
3.如果16(x-y)2+40(x-y)+25=0,那么x与y的关系是________.
三、综合提高题
1.用配方法解方程.
(1)9y2-18y-4=0 (2)x2+3=2x (3)
(4) (5) (6)
2.已知:x2+4x+y2-6y+13=0,求的值.
3.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当降价措施,经调查发现,如果每件衬衫每降价一元,商场平均每天可多售出2件. ①若商场平均每天赢利1200元,每件衬衫应降价多少元? ②每件衬衫降价多少元时,商场平均每天赢利最多?请你设计销售方案.
第6课时 22.2.3 公式法
教学内容
1.一元二次方程求根公式的推导过程; 2.公式法的概念;3.利用公式法解一元二次方程.
复习引入 前面我们学习过解一元二次方程的“直接开平方法”,比如,方程
(1)x2=4 (2)(x-2) 2=7
提问1 这种解法的(理论)依据是什么?
提问2 这种解法的局限性是什么?(只对那种“平方式等于非负数”的特殊二次方程有效,不能实施于一般形式的二次方程。)
2.面对这种局限性,怎么办?(使用配方法,把一般形式的二次方程配方成能够“直接开平方”的形式。)
(学生活动)用配方法解方程 2x2+3=7x
总结用配方法解一元二次方程的步骤(学生总结,老师点评).
(1)现将已知方程化为一般形式;(2)化二次项系数为1;(3)常数项移到右边;
(4)方程两边都加上一次项系数的一半的平方,使左边配成一个完全平方式;
(5)变形为(x+p)2=q的形式,如果q≥0,方程的根是x=-p±√q;如果q<0,方程无实根.
二、探索新知
用配方法解方程
ax2-7x+3 =0 (2)a x2+bx+3=0
(3)如果这个一元二次方程是一般形式ax2+bx+c=0(a≠0),你能否用上面配方法的步骤求出它们的两根,请同学独立完成下面这个问题.
∴x1=,x2=
由上可知,一元二次方程ax2+bx+c=0(a≠0)的根由方程的系数a、b、c而定,因此:
(1)解一元二次方程时,可以先将方程化为一般形式ax2+bx+c=0,当b2-4ac≥0时,将a、b、c代入式子x=就得到方程的根.(公式所出现的运算,恰好包括了所学过的六中运算,加、减、乘、除、乘方、开方,这体现了公式的统一性与和谐性。)
(2)这个式子叫做一元二次方程的求根公式.
(3)利用求根公式解一元二次方程的方法叫公式法.
公式的理解
(4)由求根公式可知,一元二次方程最多有两个实数根.
例1.用公式法解下列方程.
(1)2x2-x-1=0 (2)x2+1.5=-3x (3) x2-x+ =0 (4)4x2-3x+2=0
三、巩固练习
1.用公式法解方程4x2-12x=3,得到( ).
A.x= B.x= C.x= D.x=
2.方程x2+4x+6=0的根是( ).
A.x1=,x2= B.x1=6,x2= C.x1=2,x2= D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ). A.4 B.-2 C.4或-2 D.-4或2
4.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
5.当x=______时,代数式x2-8x+12的值是-4.
6.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
7. 用公式法解下列方程.
1、 2、 3、
4、 5、 6、
聚焦中考
10.方程x2+4x=2的正根为(  ) A.2- B.2+ C.-2- D.-2+
11.先化简,再求值:,其中a是方程x2+3x+1=0的根.
12.解方程:
13.从社会效益和经济效益出发,某地制定了三年规划,投入资金进行生态环境建设,并以此发展旅游产业。根据规划,第一年度投入资金800万元,第二年度比第一年度减少,第三年度比第二年度减少。第一年度当地旅游业收入估计为400万元,要使三年内的投入资金与旅游业总收入持平,旅游业收入的年增长率应是多少?(以下数据供选用:,计算结果精确到百分位)
四、应用拓展
例2.某数学兴趣小组对关于x的方程(m+1)+(m-2)x-1=0提出了下列问题.
(1)若使方程为一元二次方程,m是否存在?若存在,求出m并解此方程.
(2)若使方程为一元二次方程m是否存在?若存在,请求出.
你能解决这个问题吗?
五、归纳小结
本节课应掌握:
(1)求根公式的概念及其推导过程;(2)公式法的概念;(3)应用公式法解一元二次方程的步骤:1)将所给的方程变成一般形式,注意移项要变号,尽量让a>0.2)找出系数a,b,c,注意各项的系数包括符号。3)计算b2-4ac,若结果为负数,方程无解,4)若结果为非负数,代入求根公式,算出结果。(4)初步了解一元二次方程根的情况.
六、布置作业
1.教材P45 复习巩固4. 2.选用作业设计:
一、选择题
1.用公式法解方程4x2-12x=3,得到( ).
A.x= B.x= C.x= D.x=
2.方程x2+4x+6=0的根是( ).
A.x1=,x2= B.x1=6,x2= C.x1=2,x2= D.x1=x2=-
3.(m2-n2)(m2-n2-2)-8=0,则m2-n2的值是( ). A.4 B.-2 C.4或-2 D.-4或2
二、填空题
1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,条件是________.
2.当x=______时,代数式x2-8x+12的值是-4.
3.若关于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根为0,则m的值是_____.
4. 用公式法解下列方程(1);(2).
三、综合提高题
1.用公式法解关于x的方程: (1) x2-2ax-b2+a2=0 (2) .
2.设x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根,(1)试推导x1+x2=-,x1·x2=;(2)求代数式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.
3.某电厂规定:该厂家属区的每户居民一个月用电量不超过A千瓦时,那么这户居民这个月只交10元电费,如果超过A千瓦时,那么这个月除了交10元用电费外超过部分还要按每千瓦时元收费.(1)若某户2月份用电90千瓦时,超过规定A千瓦时,则超过部分电费为多少元?(用A表示)
月份 用电量(千瓦时) 交电费总金额(元)
3 80 25
4 45 10
(2)下表是这户居民3月、4月的用电情况和交费情况。根据上表数据,求电厂规定的A值为多少?
第7课时 22.2.4 判别一元二次方程根的情况
教学内容
用b2-4ac大于、等于0、小于0判别ax2+bx+c=0(a≠0)的根的情况及其运用.
教学目标
掌握b2-4ac>0,ax2+bx+c=0(a≠0)有两个不等的实根,反之也成立;b2-4ac=0,ax2+bx+c=0(a≠0)有两个相等的实数根,反之也成立;b2-4ac<0,ax2+bx+c=0(a≠0)没实根,反之也成立;及其它们关系的运用.
重难点关键
1.重点:b2-4ac>0一元二次方程有两个不相等的实根;b2-4ac=0一元二次方程有两个相等的实数;b2-4ac<0一元二次方程没有实根.
2.难点与关键
从具体题目来推出一元二次方程ax2+bx+c=0(a≠0)的b2-4ac的情况与根的情况的关系.
教学过程
一、复习引入(学生活动)用公式法解下列方程.
(1)2x2-3x=0 (2)3x2-2x+1=0 (3)4x2+x+1=0
二、探索新知
方程 b2-4ac的值 b2-4ac的符号 x1、x2的关系(填相等、不等或不存在)
2x2-3x=0
3x2-2x+1=0
4x2+x+1=0
(1)当b2-4ac>0时,一元二次方程ax2+bx+c=0(a≠0)有两个不相等实数根即x1=,x2=.
(2)当b-4ac=0时,一元二次方程ax2+bx+c=0(a≠0)有两个相等实数根即x1=x2=.
(3)当b2-4ac<0时,一元二次方程ax2+bx+c=0(a≠0)没有实数根.
例1.不解方程,判定方程根的情况
(1)16x2+8x=-3 (2)9x2+6x+1=0 (3)2x2-9x+8=0 (4)x2-7x-18=0
三、巩固练习
不解方程判定下列方程根的情况:
(1)x2+10x+26=0 (2)x2-x-=0 (3)3x2+6x-5=0 (4)4x2-x+=0
(5)x2-x-=0 (6)4x2-6x=0 (7)x(2x-4)=5-8x
1.一般地,对于一元二次方程ax2+bx+c=0(a≠0),当b2-4ac≥0时,它的根是_____,当b-4ac<0时,方程_________.
2.方程ax2+bx+c=0(a≠0)有两个相等的实数根,则有________,若有两个不相等的实数根,则有_________,若方程无解,则有__________.
3.若方程3x2+bx+1=0无解,则b应满足的条件是________.
4.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.
5.不解方程,判定2x2-3=4x的根的情况是______(填“二个不等实根”或“二个相等实根或没有实根”).
6.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)=0的根的情况是________.
7.以下是方程3x2-2x=-1的解的情况,其中正确的有( ).
A.∵b2-4ac=-8,∴方程有解 B.∵b2-4ac=-8,∴方程无解
C.∵b2-4ac=8,∴方程有解 D.∵b2-4ac=8,∴方程无解
8.一元二次方程x2-ax+1=0的两实数根相等,则a的值为( ).
A.a=0 B.a=2或a=-2 C.a=2 D.a=2或a=0
9.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是( ).
A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数
10.已知a、b、c是△ABC的三边长,且方程a(1+x2)+2bx-c(1-x2)=0的两根相等,则△ABC为( )
A.等腰三角形 B.等边三角形 C.直角三角形 D.任意三角形
11.不解方程,判断所给方程:①x2+3x+7=0;②x2+4=0;③x2+x-1=0中,有实数根的方程有( )
A.0个 B.1个 C.2个 D.3个
能力提升
12.不解方程,试判定下列方程根的情况.
(1)2+5x=3x2 (2)x2-(1+2)x++4=0
13.当c<0时,判别方程x2+bx+c=0的根的情况.
14.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.
15.要建一个面积为150m2的长方形养鸡场,为了节约材料,鸡场的一边靠着原有的一堵墙,墙长为am,另三边用竹篱笆围成,如果篱笆的长为35m.
(1)求鸡场的长与宽各是多少? (2)题中墙的长度a对解题有什么作用.
聚焦中考
16.在下列方程中,有实数根的是( )
(A)x2+3x+1=0 (B)=-1 (C)x2+2x+3=0 (D)=
17.关于x的一元二次方程x2+kx-1=0的根的情况是
A、有两个不相等的同号实数根 B、有两个不相等的异号实数根
C、有两个相等的实数根    D、没有实数根
18.关于x的一元二次方程(a-1)x2+x+a2+3a-4=0有一个实数根是x=0.则a的值为( ).
A、1或-4 B、1 C、-4 D、-1或4
19.若关于的一元二次方程有实数根,则的取值范围是 .
20.若0是关于x的方程(m-2)x2+3x+m2-2m-8=0的解,求实数m的值,并讨论此方程解的情况.
21.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.
(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少
(2)两个正方形的面积之和可能等于12cm2吗 若能,求出两段铁丝的长度;若不能,请说明理由.
四、应用拓展
例2.若关于x的一元二次方程(a-2)x2-2ax+a+1=0没有实数解,求ax+3>0的解集(用含a的式子表示).
五、归纳小结
本节课应掌握:
b2-4ac>0一元二次方程ax2+bx+c=0(a≠0)有两个不相等的实根;b2-4ac=0 一元二次方程ax2+bx+c=0(a≠0)有两个相等的实根;b2-4ac<0一元二次方程ax2+bx+c=0(a≠0)没有实数根及其它的运用.
六、布置作业
1.教材P46 复习巩固6 综合运用9 拓广探索1、2.
第7课时作业设计
一、选择题
1.以下是方程3x2-2x=-1的解的情况,其中正确的有( ).
A.∵b2-4ac=-8,∴方程有解 B.∵b2-4ac=-8,∴方程无解
C.∵b2-4ac=8,∴方程有解 D.∵b2-4ac=8,∴方程无解
2.一元二次方程x2-ax+1=0的两实数根相等,则a的值为( ).
A.a=0 B.a=2或a=-2 C.a=2 D.a=2或a=0
3.已知k≠1,一元二次方程(k-1)x2+kx+1=0有根,则k的取值范围是( ).
A.k≠2 B.k>2 C.k<2且k≠1 D.k为一切实数
二、填空题
1.已知方程x2+px+q=0有两个相等的实数,则p与q的关系是________.
2.不解方程,判定2x2-3=4x的根的情况是______(填“二个不等实根”或“二个相等实根或没有实根”).
3.已知b≠0,不解方程,试判定关于x的一元二次方程x2-(2a+b)x+(a+ab-2b2)=0的根的情况是________.
三、综合提高题
1.不解方程,试判定下列方程根的情况.
(1)2+5x=3x2 (2)x2-(1+2)x++4=0
2.当c<0时,判别方程x2+bx+c=0的根的情况.
3.不解方程,判别关于x的方程x2-2kx+(2k-1)=0的根的情况.
4. 已知关于x的一元二次方程ax2-2x+6=0没有实数根,求实数a的取值范围。
5. 已知关于x的方程(m+1)x2+(1-2x)m=2。m为什么值时:(1)方程有两个不相等的实数根
某集团公司为适应市场竞争,赶超世界先进水平,每年将销售总额的8%作为新产品开发研究资金,该集团2000年投入新产品开发研究资金为4000万元,2002年销售总额为7.2亿元,求该集团2000年到2002年的年销售总额的平均增长率.
第8课时 22.2.5 因式分解法
教学内容
用因式分解法解一元二次方程.
一、复习引入
(学生活动)解下列方程.
(1)2x2+x=0(用配方法) (2)3x2+6x=0(用公式法)
二、探索新知
上面两个方程都可以写成:
(1)x(2x+1)=0 (2)3x(x+2)=0
因为两个因式乘积要等于0,至少其中一个因式要等于0,也就是(1)x=0或2x+1=0,所以x1=0,x2=-.(2)3x=0或x+2=0,所以x1=0,x2=-2.(以上解法是如何实现降次的?)
因此,我们可以发现,上述两个方程中,其解法都不是用开平方降次,而是先因式分解使方程化为两个一次式的乘积等于0的形式,再使这两个一次式分别等于0,从而实现降次,这种解法叫做因式分解法.
例1.解方程
(1)10x-4.9 x2 =0 (2)x(x-2)+x-2 =0 (3)5x2-2x-=x2-2x+ (4)(x-1) 2 =(3-2x) 2
思考:使用因式分解法解一元二次方程的条件是什么? (方程一边为0,另一边可分解为两个一次因式乘积。)
练习:1.下面一元二次方程解法中,正确的是( ).
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1= ,x2=
C.(x+2)2+4x=0,∴x1=2,x2=-2 D.x2=x 两边同除以x,得x=1
三、巩固练习
1.分解因式:
(1)x2-4x=_________; (2)x-2-x(x-2)=________
(3)m2-9=________; (4)(x+1)2-16=________
2.方程(2x+1)(x-5)=0的解是_________
3.方程2x(x-2)=3(x-2)的解是___________
4.方程(x-1)(x-2)=0的两根为x1·x2,且x1>x2,则x1-2x2的值等于_______
5.已知y=x2+x-6,当x=________时,y的值为0;当x=________时,y的值等于24.
6.方程x2+2ax-b2+a2=0的解为__________.
7.若(2x+3y)2+3(2x+3y)-4=0,则2x+3y的值为_________.
8.方程x(x+1)(x-2)=0的根是( )
A.-1,2 B.1,-2 C.0,-1,2 D.0,1,2
9.若关于x的一元二次方程的根分别为-5,7,则该方程可以为( )
A.(x+5)(x-7)=0 B.(x-5)(x+7)=0 C.(x+5)(x+7)=0 D.(x-5)(x-7)=0
10.已知方程4x2-3x=0,下列说法正确的是( )
A.只有一个根x= B.只有一个根x=0 C.有两个根x1=0,x2= D.有两个根x1=0,x2=-
11.解方程2(5x-1)2=3(5x-1)的最适当的方法是( )
A.直接开平方法 B.配方法 C.公式法 D.分解因式法
12.方程(x+4)(x-5)=1的根为( )
A.x=-4 B.x=5 C.x1=-4,x2=5 D.以上结论都不对
13.用因式分解法解下列一元二次方程。
1、 2、 3、
4、 5、 6、
14.用适当的方法解下列方程.
(1)x2-2x-2=0 (2)(y-5)(y+7)=0 (3)x(2x-3)=(3x+2)(2x-3)
(4)(x-1)2-2(x2-1)=0 (5)2x2+1=2x (6)2(t-1)2+t=1
能力提升
15.(x2+y2-1)2=4,则x2+y2=_______. 16.方程x2=│x│的根是__________.
17.方程2x(x-3)=7(3-x)的根是( )
A.x=3 B.x= C.x1=3,x2= D.x1=3,x2=-
18.实数a、b满足(a+b)2+a+b-2=0,则(a+b)2的值为( )
A.4 B.1 C.-2或1 D.4或1
19.若规定两数a、b通过“※”运算,得到4ab,即a※b=4ab,例如2※6=4×2×6=48
(1)求3※5的值;
(2)求x※x+2※x-2※4=0中x的值;
(3)若无论x是什么数,总有a※x=x,求a的值.
作用.
聚焦中考
20、方程的解为 .
21、方程x(x+1)=3(x+1)的解的情况是( )
A.x=-1 B.x=3 C. D.以上答案都不对
22、(2006.兰州)在实数范围内定义一种运算“*”,其规则为,根据这个规则,方程的解为 。
23、(2006。北京海淀)已知下列n(n为正整数)个关于x的一元二次方程:
(1)请解上述一元二次方程<1>、<2>、<3>、
(2)请你指出这n个方程的根具有什么共同特点,写出一条即可。
第9课时一元二次方程的解法
例2.已知9a2-4b2=0,求代数式的值.
分析:要求的值,首先要对它进行化简,然后从已知条件入手,求出a与b的关系后代入,但也可以直接代入,因计算量比较大,比较容易发生错误.
解:原式=
∵9a2-4b2=0
∴(3a+2b)(3a-2b)=0
3a+2b=0或3a-2b=0,
a=-b或a=b
当a=-b时,原式=-=3
当a=b时,原式=-3.
四、应用拓展
例3.我们知道x2-(a+b)x+ab=(x-a)(x-b),那么x2-(a+b)x+ab=0就可转化为(x-a)(x-b)=0,请你用上面的方法解下列方程.
(1)x2-3x-4=0 (2)x2-7x+6=0 (3)x2+4x-5=0
分析:二次三项式x2-(a+b)x+ab的最大特点是x2项是由x·x而成,常数项ab是由-a·(-b)而成的,而一次项是由-a·x+(-b·x)交叉相乘而成的.根据上面的分析,我们可以对上面的三题分解因式.
解(1)∵x2-3x-4=(x-4)(x+1)
∴(x-4)(x+1)=0
∴x-4=0或x+1=0
∴x1=4,x2=-1
下略。 上面这种方法,我们把它称为十字相乘法.
五、归纳小结
本节课要掌握:
(1)用因式分解法,即用提取公因式法、十字相乘法等解一元二次方程及其应用.
(2)因式分解法要使方程一边为两个一次因式相乘,另一边为0,再分别使各一次因式等于0.
六、布置作业
一、选择题
1.下面一元二次方程解法中,正确的是( ).
A.(x-3)(x-5)=10×2,∴x-3=10,x-5=2,∴x1=13,x2=7
B.(2-5x)+(5x-2)2=0,∴(5x-2)(5x-3)=0,∴x1= ,x2=
C.(x+2)2+4x=0,∴x1=2,x2=-2
D.x2=x 两边同除以x,得x=1
2.下列命题①方程kx2-x-2=0是一元二次方程;②x=1与方程x2=1是同解方程;③方程x2=x与方程x=1是同解方程;④由(x+1)(x-1)=3可得x+1=3或x-1=3,其中正确的命题有( ).
A.0个 B.1个 C.2个 D.3个
3.如果不为零的n是关于x的方程x2-mx+n=0的根,那么m-n的值为( ).
A.- B.-1 C. D.1
二、填空题
1.x2-5x因式分解结果为_______;2x(x-3)-5(x-3)因式分解的结果是______.
2.方程(2x-1)2=2x-1的根是________.
3.二次三项式x2+20x+96分解因式的结果为________;如果令x2+20x+96=0,那么它的两个根是_________.
三、综合提高题
1.用因式分解法解下列方程.
(1)3y2-6y=0 (2)25y2-16=0 (3)x2-12x-28=0(4)x2-12x+35=0
2.已知(x+y)(x+y-1)=0,求x+y的值.
3.用适当的方法解下列一元二次方程。
1、 2、 3、
4、 5、 6、
7、 8、 9、
10、 11、 12、
13、 14、 15、
16、 17、 18、
19、 20、 21、
4.今年初,湖北武穴市发生禽流感,某养鸡专业户在禽流感后,打算改建养鸡场,建一个面积为150m2的长方形养鸡场.为了节约材料,鸡场的一边靠着原有的一条墙,墙长am,另三边用竹篱围成,如果篱笆的长为35m,问鸡场长与宽各为多少?(其中a≥20m)
第10课时 一元二次方程根与系数的关系(1)
教学目标
掌握一元二次方程的根与系数的关系并会初步应用.2.培养学生分析、观察、归纳的能力和推理论证的能力.
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律;
4.培养学生去发现规律的积极性及勇于探索的精神.
教学重点 根与系数的关系及其推导
教学难点 正确理解根与系数的关系.一元二次方程根与系数的关系是指一元二次方程两根的和,两根的积与系数的关系.
教学过程
一、复习引入
1.已知方程 x2-ax-3a=0的一个根是6,则求a及另一个根的值。
2.有上题可知一元二次方程的系数与根有着密切的关系。其实我们已学过的求根公式也反映了根与系数的关系,这种关系比较复杂,是否有根简洁的关系?
3.有求根公式可知,一元二次方程ax2+bx+c=0(a≠0)的两根为x1=,x2=.观察两式左边,分母相同,分子是-b+√b 2-4ac与-b-√b 2-4ac。两根之间通过什么计算才能得到更简洁的关系?
二、探索新知
解下列方程,并填写表格:
方 程 x1 x2 x1+x2 x1. x2
x2-2x=0
x2+3x-4=0
x2-5x+6=0
观察上面的表格,你能得到什么结论?
(1)关于x的方程 x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q之间有什么关系?
方 程 x1 x2 x1+x2 x1. x2
2x2-7x-4=0
3x2+2x-5=0
5x2-17x+6=0
(2)关于x的方程ax2+bx+c=0(a≠0)的两根x1, x2与系数a,b,c之间又有何关系呢?你能证明你的猜想吗?
解下列方程,并填写表格:
小结:1.根与系数关系:
(1)关于x的方程x2+px+q=0(p,q为常数,p2-4q≥0)的两根x1,x2与系数p,q的关系是:x1+x2=-p, x1. x2=q(注意:根与系数关系的前提条件是根的判别式必须大于或等于零。)
(2)形如的方程ax2+bx+c=0(a≠0),可以先将二次项系数化为1,再利用上面的结论。
即: 对于方程 ax2+bx+c=0(a≠0)
∵ ∴
∴ ,
(可以利用求根公式给出证明)
例1:不解方程,写出下列方程的两根和与两根积:
例2:不解方程,检验下列方程的解是否正确?
例3:已知一元二次方程的两个根是-1和2,请你写出一个符合条件的方程.(你有几种方法?)
例4:已知方程的一个根是,求另一根及k的值.
变式一:已知方程的两根互为相反数,求k;
变式二:已知方程的两根互为倒数,求k;
三、巩固练习
1.已知方程 的一个根是1,求另一根及m的值.
2.已知方程的一个根为,求另一根及c的值.
四、应用拓展
1.已知关于x的方程的一个根是另一个根的2倍,求m的值.
2.已知两数和为8,积为9,求这两个数.
3. x2-2x+6=0的两根为x1,x2,则x1+x2=2,x1x2=6.是否正确?
五、归纳小结
1.根与系数的关系:
2.根与系数关系使用的前提是:(1)是一元二次方程;(2)判别式大于等于零.
六、布置作业
1.不解方程,写出下列方程的两根和与两根积。
(1)x2-5x-3=0 (2)9x+2= x2 (3) 6 x2-3x+2=0 (4)3x2+x+1=0
2. 已知方程x2-3x+m=0的一个根为1,求另一根及m的值.
3. 已知方程x2+bx+6=0的一个根为-2求另一根及b的值.
第11课时 一元二次方程根与系数的关系(2)
教学目标
1.熟练掌握一元二次方程的根与系数的关系;
2.灵活运用一元二次方程根与系数的关系解决实际问题;
3.渗透由特殊到一般,再由一般到特殊的认识事物的规律;
4. 提高学生综合运用基础知识分析解决较复杂问题的能力.
教学重点:一元二次方程根与系数关系的灵活运用
教学难点: 某些代数式的变形
教学过程
一、复习引入
一元二次方程的根与系数的关系:
结论1.如果ax2+bx+c=0(a≠0)的两个根是x1,x2,那么:
结论2.如果方程x2+px+q=0的两个根是x1,x2,那么x1+x2=-p,x1·x2=q.
一元二次方程根与系数的关系充分刻化了两根和与两根积和方程系数的关系,它的应用不仅在验根,已知一根求另一根及待定系数k的值,还在其它数学问题中有广泛而又简明的应用
二、探索新知
例1. 已知是方程的两个根,不解方程,求下列代数式的值.
小结:运用根与系数的关系,求某些代数式的值,关键是将所求的代数式恒等变形为用x1+x2和x1x2表示的代数式.
三、巩固练习
1.已知方程的两个根为,求的值.
2.若m,n是方程的两个实数根,求代数式的值.
例2已知关于x的方程的两个实数根的平方和是11,求k的值.
提示:使用根与系数关系的前提是判别式大于等于零.
练习:若关于x的方程的两根是,且满足 ,求实数m的值.
四、应用拓展
m为何值时,(1)方程有两个不相等的正数根?(2)方程的两根异号?
五、归纳小结
1.利用根与系数的关系求代数式的值;(关键是将所求代数式用含有两根和与两根积的式子表示出2.已知两根满足某种关系式,求字母的值.(注意判别式要大于等于零)
六、布置作业:已知x1, x2是方程5 x2-7x+2=0的两个根,不解方程,求下列代数式的值.
(1) x12+x22 (2)( x1+x2)2 (3)
第12课时 22.3 实际问题与一元二次方程(1)
教学内容
由“倍数关系”等问题建立数学模型,并通过配方法或公式法或分解因式法解决实际问题.
教学目标
掌握用“倍数关系”建立数学模型,并利用它解决一些具体问题.
通过复习二元一次方程组等建立数学模型,并利用它解决实际问题,引入用“倍数关系”建立数学模型,并利用它解决实际问题.
重难点关键
1.重点:用“倍数关系”建立数学模型2.难点与关键:用“倍数关系”建立数学模型
教学过程
一、复习引入
(学生活动)问题1:列一元一次方程解应用题的步骤?
①审题,②设出未知数. ③找等量关系. ④列方程, ⑤解方程, ⑥答.
二、探索新知
探究1: 有一人患了流感,经过两轮传染后共有121人患了流感,每轮传染中平均一个人传染了几个人
分析: 1第一轮传染 1+x第二轮传染后1+x+x(1+x)
解:设每轮传染中平均一个人传染了x个人,则第一轮后共有 人患了流感,第二轮后共有 人患了流感.
列方程得 1+x+x(x+1)=121
x2+2x-120=0
解方程,得 x1=-12, x2=10
根据问题的实际意义,x=10
答:每轮传染中平均一个人传染了10个人.
思考:按照这样的传染速度,三轮传染后有多少人患流感 (121+121×10=1331)
通过对这个问题的探究,你对类似的传播问题中的数量关系有新的认识吗
(后一轮被传染的人数前一轮患病人数的x倍)烈已于
四.巩固练习.
1.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干,支干和小分支的总数是91,每个支干长出多少小分支
.
2.要组织一场篮球联赛, 每两队之间都赛2场,计划安排90场比赛,应邀请多少个球队参加比赛
3.某种电脑病毒传播非常快,如果一台电脑被感染,经过两轮被感染后就会有81台电脑被感染。请你用学过的知识分析,每轮感染中平均一台电脑会感染几台电脑?若病毒得不到有效控制,3轮感染后,被感染的电脑会不会超过700台?
4.中国内地部分养鸡场突发禽流感疫情,某养鸡场中、一只带病毒的小鸡经过两天的传染后、鸡场共有169只小鸡遭感染患病,在每一天的传染中平均一只鸡传染了几只小鸡?
第13课时 22.3实际问题与一元二次方程(2)
教学内容 建立一元二次方程的数学模型,解决增长率与降低率问题。
教学目标 掌握建立数学模型以解决增长率与降低率问题。
重难点关键
1.重点:如何解决增长率与降低率问题。
2.难点与关键:解决增长率与降低率问题的公式a(1±x)n=b,其中a是原有量,x增长(或降低)率,n为增长(或降低)的次数,b为增长(或降低)后的量。
教学过程
探究2两年前生产 1吨甲种药品的成本是5000元,生产1吨乙种药品的成本是6000元,随着生产技术的进步,现在生产 1吨甲种药品的成本是3000元,生产1吨乙种药品的成本是3600元,哪种药品成本的年平均下降率较大
分析:甲种药品成本的年平均下降额为 (5000-3000)÷2=1000(元)
乙种药品成本的年平均下降额为 (6000-3600)÷2=1200(元)
乙种药品成本的年平均下降额较大.但是,年平均下降额(元)不等同于年平均下降率
解:设甲种药品成本的年平均下降率为x,则一年后甲种药品成本为5000(1-x)元,两年后甲种药品成本为 5000(1-x)2 元,依题意得
5000(1-x)2=3000
解方程,得
答:甲种药品成本的年平均下降率约为22.5%.
算一算:乙种药品成本的年平均下降率是多少 比较:两种药品成本的年平均下降率
(22.5%,相同)
思考:经过计算,你能得出什么结论 成本下降额较大的药品,它的成本下降率一定也较大吗 应怎样全面地比较对象的变化状况
(经过计算,成本下降额较大的药品,它的成本下降率不一定较大,应比较降前及降后的价格.)
小结:类似地 这种增长率的问题在实际生活普遍存在,有一定的模式
若平均增长(或降低)百分率为x,增长(或降低)前的是a,增长(或降低)n次后的量是b,则它们的数量关系可表示为a(1±x)n=b(中增长取+,降低取-)
二 、巩固练习
(1)某林场现有木材a立方米,预计在今后两年内年平均增长p%,那么两年后该林场有木材多少立方米
(2)某化工厂今年一月份生产化工原料15万吨,通过优化管理,产量逐年上升,第一季度共生产化工原料60万吨,设二、三月份平均增长的百分率相同,均为x,可列出方程为__________.
(3)公司2001年的各项经营中,一月份的营业额为200万元,一月、二月、三月的营业额共950万元,如果平均每月营业额的增长率相同,求这个增长率.
4. 某种细菌,一个细菌经过两轮繁殖后,共有256个细菌,每轮繁殖中平均一个细菌繁殖了多少个细菌?
三、应用拓展
例2.某人将2000元人民币按一年定期存入银行,到期后支取1000元用于购物,剩下的1000元及应得利息又全部按一年定期存入银行,若存款的利率不变,到期后本金和利息共1320元,求这种存款方式的年利率.
分析:设这种存款方式的年利率为x,第一次存2000元取1000元,剩下的本金和利息是1000+2000x·80%;第二次存,本金就变为1000+2000x·80%,其它依此类推.
解:设这种存款方式的年利率为x
则:1000+2000x·80%+(1000+2000x·8%)x·80%=1320
整理,得:1280x2+800x+1600x=320,即8x2+15x-2=0
解得:x1=-2(不符,舍去),x2==0.125=12.5%
答:所求的年利率是12.5%.
四、归纳小结:本节课应掌握:增长率与降低率问题
一、选择题
1.2005年一月份越南发生禽流感的养鸡场100家,后来二、三月份新发生禽流感的养鸡场共250家,设二、三月份平均每月禽流感的感染率为x,依题意列出的方程是( ).
A.100(1+x)2=250 B.100(1+x)+100(1+x)2=250 C.100(1-x)2=250 D.100(1+x)2
2.一台电视机成本价为a元,销售价比成本价增加25%,因库存积压,所以就按销售价的70%出售,那么每台售价为( ). A.(1+25%)(1+70%)a元 B.70%(1+25%)a元 C.(1+25%)(1-70%)a元 D.(1+25%+70%)a元
3.某商场的标价比成本高p%,当该商品降价出售时,为了不亏损成本,售价的折扣(即降低的百分数)不得超过d%,则d可用p表示为( ).
A. B.p C. D.
二、填空题
1.某农户的粮食产量,平均每年的增长率为x,第一年的产量为6万kg,第二年的产量为_______kg,第三年的产量为_______,三年总产量为_______.
2.某糖厂2002年食糖产量为at,如果在以后两年平均增长的百分率为x,那么预计2004年的产量将是________.
3.我国政府为了解决老百姓看病难的问题,决定下调药品价格,某种药品在1999年涨价30%后,2001年降价70%至a元,则这种药品在1999年涨价前价格是__________.
三、综合提高题
1.为了响应国家“退耕还林”,改变我省水土流失的严重现状,2000年我省某地退耕还林1600亩,计划到2002年一年退耕还林1936亩,问这两年平均每年退耕还林的平均增长率2.洛阳东方红拖拉机厂一月份生产甲、乙两种新型拖拉机,其中乙型16台,从二月份起,甲型每月增产10台,乙型每月按相同的增长率逐年递增,又知二月份甲、乙两型的产量之比是3:2,三月份甲、乙两型产量之和为65台,求乙型拖拉机每月的增长率及甲型拖拉机一月份的产量.
2.某商场于第一年初投入50万元进行商品经营,以后每年年终将当年获得的利润与当年年初投入的资金相加所得的总资金,作为下一年年初投入的资金继续进行经营.
(1)如果第一年的年获利率为p,那么第一年年终的总资金是多少万元 (用代数式来表示)(注:年获利率=×100%)
(2)如果第二年的年获利率多10个百分点(即第二年的年获利率是第一年的年获利率与10%的和),第二年年终的总资金为66万元,求第一年的年获利率.
四、作业
某企业2004年初投资100万元生产适销对路的产品,2004年底将获得的利润与年初的投资和作2005年的投资,到2005年底,两年共获利润为56万元,已知2005年的年获利比2004的年获利率多10个百分点(即2005的年获利率是2004年的年获利率与10%的和),求2004年和2005年获利率各是多少?
某工厂一月份生产某种机器100台,计划二、三月份共生产280台。设二、三月份每月的平均增长率为X,求增长率为多少?
某市土地沙漠化严重,2005年沙漠化土地面积为100Km2,经过综合治理,希望到2007年沙漠化土地面积降到81 Km2,如果每年治理沙漠化土地的降低百分率相同,求每年的沙漠化土地的降低百分率。
第14课时 22.3 实际问题与一元二次方程(3)
教学内容
根据面积与面积之间的关系建立一元二次方程的数学模型并解决这类问题.
教学目标
掌握面积法建立一元二次方程的数学模型并运用它解决实际问题.
利用提问的方法复习几种特殊图形的面积公式来引入新课,解决新课中的问题.
重难点关键
1.重点:根据面积与面积之间的等量关系建立一元二元方程的数学模型并运用它解决实际问题.
2.难点与关键:根据面积与面积之间的等量关系建立一元二次方程的数学模型.
教学过程
一、复习引入
(一)通过上节课的学习,大家学到了哪些知识和方法?
(二)上一节,我们学习了解决“平均增长(下降)率问题”,现在,我们要学习解决“面积、体积问题。
1.直角三角形的面积公式是什么?一般三角形的面积公式是什么呢?
2.正方形的面积公式是什么呢?长方形的面积公式又是什么?
3.梯形的面积公式是什么?
4.菱形的面积公式是什么?
5.平行四边形的面积公式是什么?
6.圆的面积公式是什么?
二、探索新知
现在,我们根据刚才所复习的面积公式来建立一些数学模型,解决一些实际问题.
例1.某林场计划修一条长750m,断面为等腰梯形的渠道,断面面积为1.6m2,上口宽比渠深多2m,渠底比渠深多0.4m.
(1)渠道的上口宽与渠底宽各是多少?
(2)如果计划每天挖土48m3,需要多少天才能把这条渠道挖完?
例2.如图,要设计一本书的封面,封面长27cm,宽21cm,正中央是一个与整个封面长宽比例相同的矩形,如果要使四周的彩色边衬所占面积是封面面积的四分之一,上、下边衬等宽,左、右边衬等宽,应如何设计四周边衬的宽度(精确到0.1cm)?
思考: (1)本体中有哪些数量关系?
(2)正中央是一个与整个封面长宽比例相同的矩形如何理解?
(3)如何利用已知的数量关系选取未知数并列出方程?
老师点评:依据题意知:中央矩形的长宽之比等于封面的长宽之比=9:7,由此可以判定:上下边衬宽与左右边衬宽之比为9:7,设上、下边衬的宽均为9xcm,则左、右边衬的宽均为7xcm,依题意,得:中央矩形的长为(27-18x)cm,宽为(21-14x)cm.
因为四周的彩色边衬所点面积是封面面积的,则中央矩形的面积是封面面积的.
所以(27-18x)(21-14x)=×27×21
整理,得:16x2-48x+9=0
解方程,得:x=,
x1≈2.8cm,x2≈0.2
所以:9x1=25.2cm(舍去),9x2=1.8cm,7x2=1.4cm
因此,上下边衬的宽均为1.8cm,左、右边衬的宽均为1.4cm.
分析:这本书的长宽之比是9:7,依题知正中央的矩形两边之比也为9:7
解法二:设正中央的矩形两边分别为9xcm,7xcm。依题意得
解方程,得:
故上下边衬的宽度为:
左右边衬的宽度为:
思考:对比几种方法各有什么特点?
四、应用拓展
例3某校为了美化校园,准备在一块长32米,宽20米的长方形场地上修筑若干条道路,余下部分作草坪,并请全校同学参与设计,现在有两位学生各设计了一种方案(如图),根据两种设计方案各列出方程,求图中道路的宽分别是多少 使图(1),(2)的草坪面积为540米2.
练习 如图,在宽为20m,长为32m的矩形地面上,修筑同样宽的两条平行且与另一条相互垂直的道路,余下的六个相同的部分作为耕地,要使得耕地的面积为500m2,道路的宽为多少?
例4.如图(a)、(b)所示,在△ABC中∠B=90°,AB=6cm,BC=8cm,点P从点A开始沿AB边向点B以1cm/s的速度运动,点Q从点B开始沿BC边向点C以2cm/s的速度运动.
(1)如果P、Q分别从A、B同时出发,经过几秒钟,使S△PBQ=8cm2.
(2)如果P、Q分别从A、B同时出发,并且P到B后又继续在BC边上前进,Q到C后又继续在CA边上前进,经过几秒钟,使△PCQ的面积等于12.6cm2.(友情提示:过点Q作DQ⊥CB,垂足为D,则:)
五、归纳小结
本节课应掌握:利用已学的特殊图形的面积公式建立一元二次方程的数学模型并运用它解决实际问题.
布置作业:1.教材P53 综合运用5、6 拓广探索全部. 2.选用作业设计:
一、选择题
1.直角三角形两条直角边的和为7,面积为6,则斜边为( ).
A. B.5 C. D.7
2.有两块木板,第一块长是宽的2倍,第二块的长比第一块的长少2m,宽是第一块宽的3倍,已知第二块木板的面积比第一块大108m2,这两块木板的长和宽分别是( ).
A.第一块木板长18m,宽9m,第二块木板长16m,宽27m;
B.第一块木板长12m,宽6m,第二块木板长10m,宽18m;
C.第一块木板长9m,宽4.5m,第二块木板长7m,宽13.5m;
D.以上都不对
3.从正方形铁片,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁片的面积是( ).
A.8cm B.64cm C.8cm2 D.64cm2
二、填空题
1.矩形的周长为8,面积为1,则矩形的长和宽分别为________.
2.长方形的长比宽多4cm,面积为60cm2,则它的周长为________.
3.如图,是长方形鸡场平面示意图,一边靠墙,另外三面用竹篱笆围成,若竹篱笆总长为35m,所围的面积为150m2,则此长方形鸡场的长、宽分别为_______.
图22-10
三、综合提高题
1.如图所示的一防水坝的横截面(梯形),坝顶宽3m,背水坡度为1:2,迎水坡度为1:1,若坝长30m,完成大坝所用去的土方为4500m2,问水坝的高应是多少 (说明:背水坡度=,迎水坡度)(精确到0.1m)
2.在一块长12m,宽8m的长方形平地中央,划出地方砌一个面积为8m2的长方形花台,要使花坛四周的宽地宽度一样,则这个宽度为多少
3.谁能量出道路的宽度:
如图22-10,有矩形地ABCD一块,要在中央修一矩形花辅EFGH,使其面积为这块地面积的一半,且花圃四周道路的宽相等,今无测量工具,只有无刻度的足够长的绳子一条,如何量出道路的宽度
请同学们利用自己掌握的数学知识来解决这个实际问题,相信你一定能行.
第15课时 22.3 实际问题与一元二次方程(4)
教学内容
运用速度、时间、路程的关系建立一元二次方程数学模型解决实际问题.
教学目标
掌握运用速度、时间、路程三者的关系建立数学模型并解决实际问题.
通过复习速度、时间、路程三者的关系,提出问题,用这个知识解决问题.
重难点关键
1.重点:通过路程、速度、时间之间的关系建立数学模型解决实际问题.
2.难点与关键:建模.
教具、学具准备:小黑板
教学过程
一、复习引入: 路程、速度和时间三者的关系是什么?
二、探究新知
我们这一节课就是要利用同学们刚才所回答的“路程=速度×时间”来建立一元二次方程的数学模型,并且解决一些实际问题.
请思考下面的二道例题.
例1.某辆汽车在公路上行驶,它行驶的路程s(m)和时间t(s)之间的关系为:s=10t+3t2,那么行驶200m需要多长时间
例2.一辆汽车以20m/s的速度行驶,司机发现前方路面有情况,紧急刹车后汽车又滑行25m后停车.(1)从刹车到停车用了多少时间
(2)从刹车到停车平均每秒车速减少多少
(3)刹车后汽车滑行到15m时约用了多少时间(精确到0.1s)
分析:(1)刚刹车时时速还是20m/s,以后逐渐减少,停车时时速为0.因为刹车以后,其速度的减少都是受摩擦力而造成的,所以可以理解是匀速的,因此,其平均速度为=10m/s,那么根据:路程=速度×时间,便可求出所求的时间.
(2)很明显,刚要刹车时车速为20m/s,停车车速为0,车速减少值为20-0=20,因为车速减少值20,是在从刹车到停车所用的时间内完成的,所以20除以从刹车到停车的时间即可.
(3)设刹车后汽车滑行到15m时约用除以xs.由于平均每秒减少车速已从上题求出,所以便可求出滑行到15米的车速,从而可求出刹车到滑行到15m的平均速度,再根据:路程=速度×时间,便可求出x的值.
解:(1)从刹车到停车所用的路程是25m;从刹车到停车的平均车速是=10(m/s)
那么从刹车到停车所用的时间是=2.5(s)
(2)从刹车到停车车速的减少值是20-0=20
从刹车到停车每秒平均车速减少值是=8(m/s)
(3)设刹车后汽车滑行到15m时约用了xs,这时车速为(20-8x)m/s
则这段路程内的平均车速为=(20-4x)m/s
所以x(20-4x)=15 整理得:4x2-20x+15=0 解方程:得x=
x1≈4.08(不合,舍去),x2≈0.9(s) 答:刹车后汽车行驶到15m时约用0.9s.
三、巩固练习
(1)同上题,求刹车后汽车行驶10m时约用了多少时间.(精确到0.1s)
(2)刹车后汽车行驶到20m时约用了多少时间.(精确到0.1s)
四、应用拓展
例3.如图,某海军基地位于A处,在其正南方向200海里处有一重要目标B,在B的正东方向200海里处有一重要目标C,小岛D位于AC的中点,岛上有一补给码头:小岛F位于BC上且恰好处于小岛D的正南方向,一艘军舰从A出发,经B到C匀速巡航,一般补给船同时从D出发,沿南偏西方向匀速直线航行,欲将一批物品送达军舰.
(1)小岛D和小岛F相距多少海里
(2)已知军舰的速度是补给船的2倍,军舰在由B到C的途中与补给船相遇于E处,那么相遇
时补给船航行了多少海里 (结果精确到0.1海里)
五、归纳小结
本节课应掌握:
运用路程=速度×时间,建立一元二次方程的数学模型,并解决一些实际问题.
六、布置作业
1.教材P53 综合运用9 P58 复习题22 综合运用9.
2.选用作业设计:
一、选择题
1.一个两位数等于它的个位数的平方,且个位数字比十位数字大3,则这个两位数为( ).
A.25 B.36 C.25或36 D.-25或-36
2.某种出租车的收费标准是:起步价7元(即行驶距离不超过3km都需付7元车费);超过3km以后,每增加1km,加收2.4元(不足1km按1km计),某人乘出租车从甲地到乙地共支付车费19元,则此人从甲地到乙地经过的路程( ).
A.正好8km B.最多8km C.至少8km D.正好7km
二、填空题
1.以大约与水平成45°角的方向,向斜上方抛出标枪,抛出的距离s(单位:m)与标枪出手的速度v(单位:m/s)之间大致有如下关系:s=+2
如果抛出40m,那么标枪出手时的速度是________(精确到0.1)
2.一个小球由静止开始在一个斜坡上向下滚动,通过仪器观察得到小球滚动的距离s(m)与时间t(s)的数据如下:
时间t(s) 1 2 3 4 ……
距离s(m) 2 8 18 32 ……
写出用t表示s的关系式为_______.
三、综合提高题
1.一个小球以10m/s的速度在平坦地面上开始滚动,并且均匀减速,滚动20m后小球停下来.
(1)小球滚动了多少时间
(2)平均每秒小球的运动速度减少多少
(3)小球滚动到5m时约用了多少时间(精确到0.1s)
2.某军舰以20节的速度由西向东航行,一艘电子侦察船以30节的速度由南向北航行,它能侦察出周围50海里(包括50海里)范围内的目标.如图,当该军舰行至A处时,电子侦察船正位于A处正南方向的B处,且AB=90海里,如果军船和侦察船仍按原速度沿原方向继续航行,那么航行途中侦察船能否侦察到这艘军舰 如果能,最早何时能侦察到 如果不能,请说明理由.
第16课时 22.3 实际问题与一元二次方程(5)
教学内容
建立一元二次方程的数学模型,解决如何全面地比较几个对象的变化状况.
教学目标
掌握建立数学模型以解决如何全面地比较几个对象的变化状况的问题.
复习一种对象变化状况的解题过程,引入两种或两种以上对象的变化状况的解题方法.
重难点关键
1.重点:如何全面地比较几个对象的变化状况.
2.难点与关键:某些量的变化状况,不能衡量另外一些量的变化状况.
教具、学具准备
小黑板
教学过程
一、复习引入
(学生活动)请同学们独立完成下面的题目.
问题:某商场礼品柜台春节期间购进大量贺年卡,一种贺年卡平均每天可售出500张,每张盈利0.3元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果这种贺年卡的售价每降低0.1元,那么商场平均每天可多售出100张,商场要想平均每天盈利120元,每张贺年卡应降价多少元
老师点评:总利润=每件平均利润×总件数.设每张贺年卡应降价x元,则每件平均利润应是(0.3-x)元,总件数应是(500+×100)
解:设每张贺年卡应降价x元
则(0.3-x)(500+)=120
解得:x=0.1
答:每张贺年卡应降价0.1元.
二、探索新知
刚才,我们分析了一种贺年卡原来平均每天可售出500张,每张盈利0.3元,为了减少库存降价销售,并知每降价0.1元,便可多售出100元,为了达到某个目的,每张贺年卡应降价多少元 如果本题中有两种贺年卡或者两种其它东西,量与量之间又有怎样的关系呢 即绝对量与相对量之间的关系.
例1.某商场礼品柜台春节期间购进甲、乙两种贺年卡,甲种贺年卡平均每天可售出500张,每张盈利0.3元,乙种贺年卡平均每天可售出200张,每张盈利0.75元,为了尽快减少库存,商场决定采取适当的降价措施,调查发现,如果甲种贺年卡的售价每降价0.1元,那么商场平均每天可多售出100张;如果乙种贺年卡的售价每降价0.25元,那么商场平均每天可多售出34张.如果商场要想每种贺年卡平均每天盈利120元,那么哪种贺年卡每张降价的绝对量大.
三、巩固练习
新华商场销售甲、乙两种冰箱,甲种冰箱每台进货价为2500元,市场调研表明:当销售价为2900元时,平均每天能售出8台;而当销售价每降低50元时,平均每天就能多售出4台.乙种冰箱每台进货价为2000元,市场调研表明:当销售价为2500元时,平均每天能售出8台;而当销售价每降低45元时,平均每天就能多售出4台,商场要想使这两种冰箱的销售利润平均每天达到5000元,那么两种冰箱的定价应各是多少
四、应用拓展
例3.某商店经销一种销售成本为每千克40元的水产品,据市场分析,若每千克50元销售,一个月能售出500kg,销售单价每涨1元,月销售量就减少10kg,针对这种水产品情况,请解答以下问题:
(1)当销售单价定为每千克55元时,计算销售量和月销售利润.
(2)设销售单价为每千克x元,月销售利润为y元,求y与x的关系式.
(3)商品想在月销售成本不超过10000元的情况下,使得月销售利润达到8000元,销售单价应为多少
五、归纳小结
建立多种一元二次方程的数学建模以解决如何全面地比较几个对象的变化状况的问题.
六、布置作业
1.教材P53 复习巩固2 综合运用7、9. 2.选用作业设计:
作业设计
一、选择题
1.一个小组若干人,新年互送贺卡,若全组共送贺卡72张,则这个小组共( ).
A.12人 B.18人 C.9人 D.10人
2.某一商人进货价便宜8%,而售价不变,那么他的利润(按进货价而定)可由目前x增加到(x+10%),则x是( ).
A.12% B.15% C.30% D.50%
3.育才中学为迎接香港回归,从1994年到1997年四年内师生共植树1997棵,已知该校1994年植树342棵,1995年植树500棵,如果1996年和1997年植树的年增长率相同,那么该校1997年植树的棵数为( ).
A.600 B.604 C.595 D.605
二、填空题
1.一个产品原价为a元,受市场经济影响,先提价20%后又降价15%,现价比原价多_______%.
2.甲用1000元人民币购买了一手股票,随即他将这手股票转卖给乙,获利10%,乙而后又将这手股票返卖给甲,但乙损失了10%,最后甲按乙卖给甲的价格的九折将这手股票卖出,在上述股票交易中,甲盈了_________元.
3.一个容器盛满纯药液63L,第一次倒出一部分纯药液后用水加满,第二次又倒出同样多的药液,再加水补满,这时容器内剩下的纯药液是28L,设每次倒出液体xL,则列出的方程是________.
三、综合提高题
1.上海甲商场七月份利润为100万元,九月份的利率为121万元,乙商场七月份利率为200万元,九月份的利润为288万元,那么哪个商场利润的年平均上升率较大
2.某果园有100棵桃树,一棵桃树平均结1000个桃子,现准备多种一些桃树以提高产量,试验发现,每多种一棵桃树,每棵桃树的产量就会减少2个,如果要使产量增加15.2%,那么应多种多少棵桃树
3.某玩具厂有4个车间,某周是质量检查周,现每个车间都原有a(a>0)个成品,且每个车间每天都生产b(b>0)个成品,质量科派出若干名检验员周一、周二检验其中两个车间原有的和这两天生产的所有成品,然后,周三到周五检验另外两个车间原有的和本周生产的所有成品,假定每名检验员每天检验的成品数相同.
(1)这若干名检验员1天共检验多少个成品 (用含a、b的代数式表示)
(2)若一名检验员1天能检验b个成品,则质量科至少要派出多少名检验员
九年级数学第二十二章一元二次方程测试题(A)
一、选择题(每小题3分,共24分)
1、下列方程中,关于x的一元二次方程是( )
A. B. C. D.
2、已知m方程的一个根,则代数式的值等于( )
A.—1 B.0 C.1 D.2
3、方程的解为( )A.x=2 B. x1=,x2=0 C. x1=2,x2=0 D. x=0
4、解方程的适当方法是( )
A、开平方法 B、配方法 C、公式法 D、因式分解法
5、用配方法解下列方程时,配方有错误的是( )
A.x2-2x-99=0化为(x-1)2=100 B.x2+8x+9=0化为(x+4)2=25
C.2t2-7t-4=0化为 D.3y2-4y-2=0化为
6、下面是李明同学在一次测验中解答的填空题,其中答对的是( ).
A.若x2=4,则x=2 B.方程x(2x-1)=2x-1的解为x=1
C.若x2-5xy-6y2=0(xy≠),则=6或=-1。D.若分式值为零,则x=1,2
7、用配方法解一元二次方程,此方程可变形为( )
A、 B、
C、 D、
8、据《武汉市2002年国民经济和社会发展统计公报》报告:武汉市2002年国内生产总值达1493亿元,比2001年增长11.8%.下列说法:① 2001年国内生产总值为1493(1-11.8%)亿元;②2001年国内生产总值为亿元;③2001年 国内生产总值为亿元;④若按11.8%的年增长率计算,2004年的国内生产总值预计为1493(1+11.8%)亿元.其中正确的是( )
A.③④ B.②④ C.①④ D.①②③
9、从正方形的铁皮上,截去2cm宽的一条长方形,余下的面积是48cm2,则原来的正方形铁皮的面积是( ) A.9cm2 B.68cm2 C.8cm2 D.64cm2
二、填空题(每小题3分,共15分)
10、若方程mx2+3x-4=3x2是关于x的一元二次方程,则m的取值范围是 .
11、把方程(2x+1)(x—2)=5-3x整理成一般形式后,得 ,其中二次项系数是 ,一次项系数是 ,常数项是 。
12、配方:x2 —3x+ __ = (x —__ )2; 4x2—12x+15 = 4( )2+6
13、一元二次方程ax2+bx+c=0 (a≠0)的求根公式是: 。
14、认真观察下列方程,指出使用何种方法解比较适当:
(1)4x2+16x=5,应选用 法;(2)2(x+2)(x-1)=(x+2)(x+4),应选用 法;
(3)2x2-3x-3=0,应选用 法.
15、方程的解是____;方程的解是______________。
16、已知代数式7x(x+5)+10与代数式9x-9的值互为相反数,则x= .
17、若一个等腰三角形的三边长均满足方程x2-6x+8=0,则此三角形的周长为 .
三、解答题(每小题6分,共18分)
18、用开平方法解方程: 19、用配方法解方程:x2 —4x+1=0
20、用公式法解方程:3x2+5(2x+1)=0 21、用因式分解法解方程:3(x-5)2=2(5-x)
四、应用题
22、某校2005年捐款1万元给希望工程,以后每年都捐款,计划到2007年共捐款4.75万元,问该校捐款的平均年增长率是多少?
23.有一面积为150平方米的矩形鸡场,鸡场的一边靠墙(墙长18米),另三边用竹篱笆围成,如果竹篱笆的长为35米。求鸡场的长和宽。
五、综合题
24、已知三角形的两边长分别是3和8,第三边的数值是一元二次方程x2-17x+66=0的根。求此三角形的周长。
九年级数学第二十二章一元二次方程测试题(B)
一、选择题(每小题分,共分)
1.若方程是关于x的一元二次方程,则( )
A. B.m=2 C.m= —2 D.
2.若方程有解,则的取值范围是(   )
A.   B.   C.   D.无法确定
3.如果关于x的一元二次方程x2+px+q=0的两根分别为x1=3、x2=1,那么这个一元二次方程是( )
A. x2+3x+4=0 B.x2+4x-3=0 C.x2-4x+3=0 D. x2+3x-4=0
4.一元二次方程有两个相等的实数根,则等于 (  )
A. B. 1 C. 2 D. 或1
5.对于任意实数x,多项式x2-5x+8的值是一个( )
A.非负数 B.正数 C.负数 D.无法确定
6.已知代数式与的值互为相反数,则的值是(   )
A.-1或3   B.1或-3   C.1或3   D.-1和-3
7.如果关于x的方程ax 2+x–1= 0有实数根,则a的取值范围是( )
A.a>– B.a≥– C.a≥–且a≠0 D.a>–且a≠0
8.若t是一元二次方程的根,则判别式和完全平方式的关系是( )A.△=M B. △>M C. △9.方程x2+ax+1=0和x2-x-a=0有一个公共根,则a的值是( )
A.0 B.1 C.2 D.3
10.三角形两边的长分别是8和6,第三边的长是一元二次方程的一个实数根,则该三角形的面积是( )A.24 B.24或 C.48 D.
二、填空题(每小题分,共分)
11.一元二次方程(x+1)(3x-2)=10的一般形式是 。
12.当m 时,关于x的方程是一元二次方程;当m 时,此方程是一元一次方程。
13.如果一元二次方程ax2-bx+c=0有一个根为0,则c= ;关于x的一元二次方程2x2-ax-a2=0有一个根为-1,则a= 。
14.把一元二次方程3x2-2x-3=0化成3(x+m)2=n的形式是 ;若多项式x2-ax+2a-3是一个完全平方式,则a= 。
15.若方程有整数根,则m的值可以是 (只填一个)。
16.已知两个连续奇数的积是15,则这两个数是__________。
17.已知,则的值等于 。
18.已知,那么代数式的值为 。
19.当x= 时,既是最简二次根式,被开方数又相同。
三、解答题
20.用配方法证明的值不小于1。
21.已知a、b、c均为实数,且,求方程的根。
四、应用题
22.合肥百货大搂服装柜在销售中发现:“宝乐”牌童装平均每天可售出20件,每件盈利40元。为了迎接“十·一”国庆节,商场决定采取适当的降价措施,扩大销售量,增加盈利,尽快减少库存。经市场调查发现:如果每件童装降价4元,那么平均每天就可多售出8件。要想平均每天在销售这种童装上盈利1200元,那么每件童装应降价多少?
五、综合题
23.设m为整数,且4(2)
(1)