人教版 2021-2022学年八年级数学上册13.3等腰三角形 解答题专题训练(word版、含解析)

文档属性

名称 人教版 2021-2022学年八年级数学上册13.3等腰三角形 解答题专题训练(word版、含解析)
格式 doc
文件大小 432.0KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-11-01 15:13:50

图片预览

文档简介

2021-2022学年人教版八年级数学上册《13.3等腰三角形》解答题专题训练(附答案)
1.如图,一个六边形的六个内角都是120°,AB=1,BC=CD=3,DE=2,求该六边形的周长.
2.如图,已知△ABC是等边三角形,D是边AC的中点,连接BD,EC⊥BC于点C,CE=BD.求证:△ADE是等边三角形.
3.如图,在△ABC中,AB=AC,点D、E、F分别在AB、BC、AC边上,且BE=CF,BD=CE.
(1)求证:△DEF是等腰三角形;
(2)当∠A=40°时,求∠DEF的度数.
4.如图,在△ABC中,BC=8cm,BP、CP分别是∠ABC和∠ACB的平分线,且PD∥AB,PE∥AC.
(1)求△PDE的周长;
(2)若∠A=50°,求∠BPC的度数.
5.如图,已知△ABC是等腰直角三角形,∠BAC=90°,BE是∠ABC的平分线,DE⊥BC,垂足为D.
(1)请你写出图中所有的等腰三角形;
(2)请你判断AD与BE垂直吗?并说明理由.
(3)如果BC=10,求AB+AE的长.
6.如图,在△ABC中,∠A=90°,CD平分∠ACB交AB于点D,过点D作DE∥BC交AC于点E.
(1)若∠B=40°,求∠CDE的度数.
(2)若DE=4,试添加一个条件,并求出BC的长度.
7.已知△ABC中,∠ACB的平分线CD交AB于点D,DE∥BC.
(1)如图1,如果点E是边AC的中点,AC=8,求DE的长;
(2)如图2,若DE平分∠ADC,∠ABC=30°,在BC边上取点F使BF=DF,若BC=9,求DF的长.
8.如图,在△ABC中,AB=AC.过点A作BC的平行线交∠ABC的角平分线于点D,连接CD.
(1)求证:△ACD为等腰三角形.
(2)若∠BAD=140°,求∠BDC的度数.
9.如图,已知在△ABC中,CF平分∠ACB,且AF⊥CF于点F,BE平分△ABC的一个外角,且AE⊥BE于点E.
(1)求证:EF∥BC.
(2)若BC=5,AC=4,EF=4,求AB的长.
10.如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB交BE于点F.
(1)如图1,若∠BAC=40°,求∠AFE的度数.
(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.
11.如图①,△ABC中,AB=AC,∠B、∠C的平分线交于O点,过O点作EF∥BC交AB、AC于E、F.
(1)图中有几个等腰三角形?猜想:EF与BE、CF之间有怎样的关系,并说明理由.
(2)如图②,若AB≠AC,其他条件不变,图中还有等腰三角形吗?如果有,分别指出它们.在第(1)问中EF与BE、CF间的关系还存在吗?
(3)如图③,若△ABC中∠B的平分线BO与三角形外角平分线CO交于O,过O点作OE∥BC交AB于E,交AC于F.这时图中还有等腰三角形吗?EF与BE、CF关系又如何?说明你的理由.
12.在等边△ABC中,
(1)如图1,P,Q是BC边上两点,AP=AQ,∠BAP=20°,求∠AQB的度数;
(2)点P,Q是BC边上的两个动点(不与B,C重合),点P在点Q的左侧,且AP=AQ,点Q关于直线AC的对称点为M,连接AM,PM.
①依题意将图2补全;
②求证:PA=PM.
13.已知,在等边三角形ABC中,点E在AB上,点D在CB的延长线上,且ED=EC.
(1)【特殊情况,探索结论】
如图1,当点E为AB的中点时,确定线段AE与DB的大小关系,请你直接写出结论:AE   DB(填“>”、“<”或“=”).
(2)【特例启发,解答题目】
如图2,当点E为AB边上任意一点时,确定线段AE与DB的大小关系,请你直接写出结论,AE   DB(填“>”、“<”或“=”);理由如下,过点E作EF∥BC,交AC于点F.(请你完成以下解答过程).
(3)【拓展结论,设计新题】
在等边三角形ABC中,点E在直线AB上,点D在线段CB的延长线上,且ED=EC,若△ABC的边长为1,AE=2,求CD的长(请你画出相应图形,并直接写出结果).
14.在等边△ABC中,D为AC的中点,延长BC至点E,使CE=DC,连接ED并延长交AB于点F.
(1)求证:△DBE是等腰三角形;
(2)DF与DE有怎样的数量关系?请说明理由.
15.如图,△ABC中,AB=BC=AC=12cm,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为1cm/s,点N的速度为2cm/s.当点N第一次到达B点时,M、N同时停止运动.
(1)点M、N运动几秒时,M、N两点重合?
(2)点M、N运动几秒时,可得到等边三角形△AMN?
(3)当点M、N在BC边上运动时,能否得到以MN为底边的等腰三角形AMN?如存在,请求出此时M、N运动的时间.
16.在△ABC中,AB=AC.
(1)如图1,如果∠BAD=30°,AD是BC上的高,AD=AE,则∠EDC=   
(2)如图2,如果∠BAD=40°,AD是BC上的高,AD=AE,则∠EDC=   
(3)思考:通过以上两题,你发现∠BAD与∠EDC之间有什么关系?请用式子表示:   
(4)如图3,如果AD不是BC上的高,AD=AE,是否仍有上述关系?如有,请你写出来,并说明理由.
17.如图,△ABC中,∠ABC=∠ACB,点D在BC所在的直线上,点E在射线AC上,且AD=AE,连接DE.
(1)如图①,若∠B=∠C=35°,∠BAD=80°,求∠CDE的度数;
(2)如图②,若∠ABC=∠ACB=75°,∠CDE=18°,求∠BAD的度数;
(3)当点D在直线BC上(不与点B、C重合)运动时,试探究∠BAD与∠CDE的数量关系,并说明理由.
18.如图,在△ABC中,AB=AC,D是BC上任意一点,过D分别向AB,AC引垂线,垂足分别为E,F,CG是AB边上的高.
(1)DE,DF,CG的长之间存在着怎样的等量关系?并加以证明;
(2)若D在底边的延长线上,(1)中的结论还成立吗?若不成立,又存在怎样的关系?请说明理由.
19.如图,AD平分∠BAC,AD⊥BD,垂足为点D,DE∥AC.
求证:△BDE是等腰三角形.
20.如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
(1)求证:①AB=AD;②CD平分∠ACE.
(2)猜想∠BDC与∠BAC之间有何数量关系?并对你的猜想加以证明.
参考答案
1.解:如图,延长并反向延长BC,AF,DE.
∵六边形ABCDEF的每个内角都是120°
∴∠G=∠H=∠P=60°,
∴△GHP是等边三角形,
∴六边形ABCDEF的周长=GH+BC+CD+DE=(1+3+3)+(3+3)+2=15.
答:该六边形周长是15.
2.证明:∵△ABC是等边三角形,D为边AC的中点,
∴BD⊥AC,即∠ADB=90°,
∵EC⊥BC,
∴∠BCE=90°,
∴∠DBC+∠DCB=90°,∠ECD+∠BCD=90°,
∴∠ACE=∠DBC,
∵在△CBD和△ACE中
∴△CBD≌△ACE(SAS),
∴CD=AE,∠AEC=∠BDC=90°,
∵D为边AC的中点,∠AEC=90°,
∴AD=DE,
∴AD=AE=DE,
即△ADE是等边三角形,
3.证明:∵AB=AC,
∴∠ABC=∠ACB,
在△DBE和△ECF中

∴△DBE≌△ECF,
∴DE=EF,
∴△DEF是等腰三角形;
(2)∵△DBE≌△ECF,
∴∠1=∠3,∠2=∠4,
∵∠A+∠B+∠C=180°,
∴∠B=(180°﹣40°)=70°
∴∠1+∠2=110°
∴∠3+∠2=110°
∴∠DEF=70°
4.解:(1)∵BP、CP分别是∠ABC和∠ACB的角平分线,
∴∠ABP=∠PBD,∠ACP=∠PCE,
∵PD∥AB,PE∥AC,
∴∠ABP=∠BPD,∠ACP=∠CPE,
∴∠PBD=∠BPD,∠PCE=∠CPE,
∴BD=PD,CE=PE,
∴△PDE的周长=PD+DE+PE=BD+DE+EC=BC=8cm.
(2)∵∠A=50°,
∴∠ABC+∠ACB=130°,
∴∠ABC+∠ACB=65°,
∵∠PBC=∠ABC,∠PCB=∠ACB,
∴∠PBC+∠PCB=65°,
∴∠BPC=180°﹣65°=115°.
5.解:(1)根据等腰三角形的定义判断,△ABC等腰直角三角形;
∵BE为角平分线,而AE⊥AB,ED⊥CE,故AE=DE,故△ADE均为等腰三角形;
∵BE=BE,∠ABE=∠DEB,
∴△ABE≌△DBE(SAS),
∴AB=BD,
∴△ABD和△ADE均为等腰三角形;
∵∠C=45°,ED⊥DC,
∴△EDC也符合题意,
综上所述符合题意的三角形为有△ABC,△ABD,△ADE,△EDC;
(2)AD与BE垂直.
证明:∵△ABE≌△DBE(SAS),
∴BA=BD,EA=EC,
∴BE垂直平分相等AD,即AD⊥BE.
(3)∵BE是∠ABC的平分线,DE⊥BC,EA⊥AB,
∴AE=DE,
在Rt△ABE和Rt△DBE中
∴Rt△ABE≌Rt△DBE(HL),
∴AB=BD,
又△ABC是等腰直角三角形,∠BAC=90°,
∴∠C=45°,又ED⊥BC,
∴△DCE为等腰直角三角形,
∴DE=DC,
即AB+AE=BD+DC=BC=10.
6.解:(1)∵∠A=90°,∠B=40°,
∴∠ACB=180°﹣∠B﹣∠BAC=50°,
∵CD平分∠ACB,
∴∠BCD=ACB=25°,
∵DE∥BC,
∴∠CDE=∠DCB=25°;
(2)添加条件为:∠B=30°,
∵∠A=90°,∠B=30°,
∴∠ACB=180°﹣∠B﹣∠BAC=60°,
∵CD平分∠ACB,
∴∠BCD=∠DCA=ACB=30°,
∵DE∥BC,
∴∠ADE=∠B=30°,∠EDC=∠DCB=30°,
∴∠EDC=∠ECD,
∴DE=CE,
∵DE=4,
∴AE=DE=2,CE=DE=4,
∴AC=6,
∴BC=2AC=12.
7.解:(1)∵DC平分∠ACB,
∴∠BCD=∠ACD,
∵DE∥BC,
∴∠EDC=∠BCD,
∴∠EDC=∠ACD,
∴ED=EC,
∵点E是边AC的中点,AC=8,
∴EC=AC=4,
∴DE=4;
(2)∵DE∥BC,
∴∠ADE=∠B,∠CDE=∠BCD,
∵DE平分∠ADC,
∴∠ADE=∠CDE,
∴∠B=∠BCD,
∴DB=DC.
如图2,作DG⊥BC于点G,
∵DB=DC,DG⊥BC,
∴GB=BC=×9=4.5,
∵∠ABC=30°,BF=DF,
∴∠BDF=∠B=30°,
∴∠DFG=∠B+∠BDF=60°,
∴∠FDG=30°,
∴BF=DF=2FG,
∴GF=1.5,
∴DF=2FG=3.
8.(1)证明:∵BD平分∠ABC,
∴∠1=∠2.
∵AD∥BC,
∴∠2=∠3.
∴∠1=∠3.
∴AB=AD.
∵AB=AC,
∴AC=AD,
∴△ACD为等腰三角形;
(2)解:由(1)知,∠1=∠2=∠3,
∵∠BAD=140°,∠BAD+∠1+∠3=180°,
∴∠1=∠2=∠3=(180°﹣∠BAD)=20°,
∠ABC=40°,
∵AB=AC,
∴∠ACB=∠ABC=40°,
由(1)知,AD=AC,
∴∠ACD=∠ADC=∠BDC+∠3=∠BDC+20°,
∵AD∥BC,
∴∠ADC+∠BCD=180°,
∴40°+(∠BDC+20°)+(∠BDC+20°)=180°,
∴∠BDC=50°.
9.(1)证明:延长AF交BCA于M,延长AE交CB的延长线与N,
∵AF⊥CF,
∴∠AFC=∠MFC=90°,
∵CF平分∠ACB,
∴∠ACF=∠MCF,
在△ACF和△MCF中,

∴△ACF≌△MCF(ASA),
∴AF=MF,
同理AE=NE,
∴EF∥MN,
∴EF∥BC;
(2)解:∵AF=MF,AE=NE,
∴MN=2EF=2×4=8,
∵AC=4,
∴CM=AC=4,
∴CN=MN+CM=12,
∵BC=5,
∴AB=BN=CN﹣BC=7.
10.解:(1)∵AB=AC,∠BAC=40°,
∴∠ABC=70°,
∵BE平分∠ABC,
∴∠ABF=35°,
∵AF⊥AB,
∴∠BAF=90°,
∴∠AFE=125°.
(2)∵BD平分∠ABC,
∴∠ABD=∠CBD,
∵BD⊥AC,
∴∠ADB=CDB=90°,
∴△ABD≌△CBD(ASA),
∴AB=BC,
∵AB=AC,
∴三角形ABC是等边三角形,
∴∠ABF=30°,
∴AF=4,
在Rt△ADF中,
DF=2.
11.解:(1)图中有5个等腰三角形,
EF=BE+CF,
∵△BEO≌△CFO,且这两个三角形均为等腰三角形,
可得EF=EO+FO=BE+CF;
(2)还有两个等腰三角形,为△BEO、△CFO,
如下图所示:∵EF∥BC,
∴∠2=∠3,
又∵∠1=∠2,
∴∠1=∠3,
∴△BEO为等腰三角形,在△CFO中,同理可证.
∴EF=BE+CF存在.
(3)有等腰三角形:△BEO、△CFO,此时EF=BE﹣CF,
∵如下图所示:OE∥BC,∴∠5=∠6,
又∠4=∠5,∴∠4=∠6,
∴△BEO是等腰三角形,
在△CFO中,同理可证△CFO是等腰三角形,
∵BE=EO,OF=FC,
∴BE=EF+FO=EF+CF,
∴EF=BE﹣CF
12.解:(1)∵△ABC为等边三角形
∴∠B=60°
∴∠APC=∠BAP+∠B=80°
∵AP=AQ
∴∠AQB=∠APC=80°,
(2)①补全图形如图所示,
②证明:过点A作AH⊥BC于点H,如图.
由△ABC为等边三角形,AP=AQ,
可得∠PAB=∠QAC,
∵点Q,M关于直线AC对称,
∴∠QAC=∠MAC,AQ=AM
∴∠MAC+∠PAC=∠PAB+∠PAC=60°,
∵AP=AM,
∴△APM为等边三角形
∴PA=PM.
13.解:(1)当E为AB的中点时,AE=DB;
(2)AE=DB,理由如下,过点E作EF∥BC,交AC于点F,
证明:∵△ABC为等边三角形,
∴△AEF为等边三角形,
∴AE=EF,BE=CF,
∵ED=EC,
∴∠D=∠ECD,
∵∠DEB=60°﹣∠D,∠ECF=60°﹣∠ECD,
∴∠DEB=∠ECF,
在△DBE和△EFC中,

∴△DBE≌△EFC(SAS),
∴DB=EF,
则AE=DB;
(3)点E在AB延长线上时,如图所示,同理可得△DBE≌△EFC,
∴DB=EF=2,BC=1,
则CD=BC+DB=3.
故答案为:(1)=;(2)=
14.(1)证明:连接BD,
∵△ABC是等边三角形,
∴∠ABC=∠ACB=60°,
∵D为AC的中点,
∴∠DBC=30°,
∵CD=CE,
∴∠E=∠CDE,
∵∠ACB=∠E+∠CDE=2∠E=60°,
∴∠E=30°,
∴∠E=∠DBC,
∴△DBE是等腰三角形;
(2)解:DE=2DF.
理由:∵△ABC是等边三角形,
∴AB=BC,∠ABC=60°,
∵D为AC的中点,
∴∠DBC=∠ABD=∠ABC=30°,
∵∠E=30°,
∴∠DBC=∠E,
∴DE=BD,
∵∠BFE=90°,∠ABD=30°,
∴BD=2DF,
即DE=2DF.
15.解:(1)设点M、N运动x秒时,M、N两点重合,
x×1+12=2x,
解得:x=12;
(2)设点M、N运动t秒时,可得到等边三角形△AMN,如图①,
AM=t×1=t,AN=AB﹣BN=12﹣2t,
∵三角形△AMN是等边三角形,
∴t=12﹣2t,
解得t=4,
∴点M、N运动4秒时,可得到等边三角形△AMN.
(3)当点M、N在BC边上运动时,可以得到以MN为底边的等腰三角形,
由(1)知12秒时M、N两点重合,恰好在C处,
如图②,假设△AMN是等腰三角形,
∴AN=AM,
∴∠AMN=∠ANM,
∴∠AMC=∠ANB,
∵AB=BC=AC,
∴△ACB是等边三角形,
∴∠C=∠B,
在△ACM和△ABN中,
∵,
∴△ACM≌△ABN(AAS),
∴CM=BN,
设当点M、N在BC边上运动时,M、N运动的时间y秒时,△AMN是等腰三角形,
∴CM=y﹣12,NB=36﹣2y,CM=NB,
y﹣12=36﹣2y,
解得:y=16.故假设成立.
∴当点M、N在BC边上运动时,能得到以MN为底边的等腰三角形AMN,此时M、N运动的时间为16秒.
16.解:(1)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=30°,
∴∠BAD=∠CAD=30°,
∵AD=AE,
∴∠ADE=∠AED=75°,
∴∠EDC=15°.
(2)∵在△ABC中,AB=AC,AD是BC上的高,
∴∠BAD=∠CAD,
∵∠BAD=40°,
∴∠BAD=∠CAD=40°,
∵AD=AE,
∴∠ADE=∠AED=70°,
∴∠EDC=20°.
(3)∠BAD=2∠EDC(或∠EDC=∠BAD)
(4)仍成立,理由如下
∵AD=AE,∴∠ADE=∠AED,
∴∠BAD+∠B=∠ADC=∠ADE+∠EDC=∠AED+∠EDC=(∠EDC+∠C)+∠EDC
=2∠EDC+∠C
又∵AB=AC,
∴∠B=∠C
∴∠BAD=2∠EDC.
故分别填15°,20°,∠EDC=∠BAD
17.解:(1)∵∠B=∠C=35°,
∴∠BAC=110°,
∵∠BAD=80°,
∴∠DAE=30°,
∴∠ADE=∠AED=75°,
∴∠CDE=180°﹣35°﹣30°﹣75°=40°;
(2)∵∠ACB=75°,∠CDE=18°,
∴∠E=75°﹣18°=57°,
∴∠ADE=∠AED=57°,
∴∠ADC=39°,
∵∠ABC=∠ADB+∠DAB=75°,
∴∠BAD=36°;
(3)设∠ABC=∠ACB=y°,∠ADE=∠AED=x°,∠CDE=α,∠BAD=β
①如图1,当点D在点B的左侧时,∠ADC=x°﹣α,
∴,
(1)﹣(2)得2α﹣β=0,
∴2α=β;
②如图2,当点D在线段BC上时,∠ADC=x°+α,
∴,
(2)﹣(1)得α=β﹣α,
∴2α=β;
③如图3,当点D在点C右侧时,∠ADC=x°﹣α,
∴,
(2)﹣(1)得2α﹣β=0,
∴2α=β.
综上所述,∠BAD与∠CDE的数量关系是2∠CDE=∠BAD.
18.解:(1)DE+DF=CG.
证明:连接AD,
则S△ABC=S△ABD+S△ACD,即AB CG=AB DE+AC DF,
∵AB=AC,
∴CG=DE+DF.
(2)当点D在BC延长线上时,(1)中的结论不成立,但有DE﹣DF=CG.
理由:连接AD,则S△ABD=S△ABC+S△ACD,
即AB DE=AB CG+AC DF
∵AB=AC,
∴DE=CG+DF,
即DE﹣DF=CG.
同理当D点在CB的延长线上时,则有DF﹣DE=CG,说明方法同上.
19.证明:∵DE∥AC,
∴∠1=∠3,
∵AD平分∠BAC,
∴∠1=∠2,
∴∠2=∠3,
∵AD⊥BD,
∴∠2+∠B=90°,∠3+∠BDE=90°,
∴∠B=∠BDE,
∴BE=DE,
∴△BDE是等腰三角形.
20.解:(1)①∵AD∥BE,
∴∠ADB=∠DBC,
∵BD平分∠ABC,
∴∠ABD=∠DBC,
∴∠ABD=∠ADB,
∴AB=AD;
②∵AD∥BE,
∴∠ADC=∠DCE,
由①知AB=AD,
又∵AB=AC,
∴AC=AD,
∴∠ACD=∠ADC,
∴∠ACD=∠DCE,
∴CD平分∠ACE;
(2)∠BDC=∠BAC,
∵BD、CD分别平分∠ABE,∠ACE,
∴∠DBC=∠ABC,∠DCE=∠ACE,
∵∠BDC+∠DBC=∠DCE,
∴∠BDC+∠ABC=∠ACE,
∵∠BAC+∠ABC=∠ACE,
∴∠BDC+∠ABC=∠ABC+∠BAC,
∴∠BDC=∠BAC.