2021年北师大版数学九年级上册
1.2《矩形的性质与判定》同步练习卷
一、选择题
1.在四边形ABCD中,AC、BD交于点O,在下列各组条件中,不能判定四边形ABCD为矩形的是( )
A.AB=CD,AD=BC,AC=BD
B.AO=CO,BO=DO,∠A=90°
C.∠A=∠C,∠B+∠C=180°,AC⊥BD
D.∠A=∠B=90°,AC=BD
2.如图,四边形ABCD为平行四边形,延长AD到E,使DE=AD,连接EB,EC,DB,添加一个条件,不能使四边形DBCE成为矩形的是( )
A.AB=BE B.BE⊥DC C.∠ADB=90° D.CE⊥DE
3.对角线相等且互相平分的四边形是( )
A.一般四边形 B.平行四边形 C.矩形 D.菱形
4.如图,在平行四边形ABCD中,M、N是BD上两点,BM=DN,连接AM、MC、CN、NA,
添加一个条件,使四边形AMCN是矩形,这个条件是( )
A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
5.在 ABCD中,AB=3,BC=4,当 ABCD的面积最大时,下结论正确的有( )
①AC=5;②∠A+∠C=180°;③AC⊥BD;④AC=BD.
A.①②③ B.①②④ C.②③④ D.①③④
6.下列关于矩形的说法,正确的是( )
A.对角线相等的四边形是矩形
B.对角线互相平分的四边形是矩形
C.矩形的对角线互相垂直且平分
D.矩形的对角线相等且互相平分
7.如图,在矩形纸片ABCD中,AB=3,点E在边BC上,将△ABE沿直线AE折叠,点B恰好落在对角线AC上的点F处,若∠EAC=∠ECA,则AC的长是( )
A. B.6 C.4 D.5
8.如图,将矩形ABCD沿对角线BD折叠,使点C和点C′重合,若AB=2,则C′D的长为( )
A.1 B.2 C.3 D.4
9.如图,矩形的两条对角线的一个交角为60°,两条对角线的长度的和为20cm,则这个矩形的一条较短边的长度为( )
A.10cm B.8cm C.6cm D.5cm
10.如图,在长方形ABCD中,E是AD的中点,将△ABE沿直线BE折叠后得到△GBE,延长BG交CD于点F,连结EF.若AB=6,BC=4,则FD的长为( )
A.2 B.4 C. D.2
二、填空题
11.如图,连接四边形ABCD各边中点,得到四边形EFGH,还要添加 条件,才能保证四边形EFGH是矩形.
12.如图,将矩形ABCD沿DE折叠,使A点落在BC上F处,若∠EFB=60°,则∠AED=____________.
13.如图,在矩形ABCD中,AE⊥BD于E,∠DAE=3∠EAB,则∠ACD的度数为 .
14.如图,在矩形ABCD中,AB=8.将矩形的一角折叠,使点B落在边AD上的B/点处,若AB/=4,则折痕EF的长度为 .
15.如图,在一张矩形纸片ABCD中,AD=4cm,点E,F分别是CD和AB的中点.现将这张纸片折叠,使点B落在EF上的点G处,折痕为AH.若HG的延长线恰好经过点D,则CD的长为
.
16.如图,矩形ABCD中,AB=6,AD=8,P是BC上的点,PE⊥BD于E,PF⊥AC于F,则PF+PE= .
三、解答题
17.如图,在矩形ABCD中,点E,F在对角线BD.请添加一个条件,使得结论“AE=CF”成立,并加以证明.
18.如图,在△ABC中,∠BAC>90°,DC⊥DB,BE⊥EC,F为BC上的一个动点,猜想:当F为于BC上的什么位置时,△FDE是等腰三角形,并证明你的猜想是正确的。
19.如图,AB=AC,AD=AE,DE=BC,且∠BAD=∠CAE,求证:四边形BCDE是矩形.
20.如图, ABCD的对角线AC、BD相交于点O,AE=CF.
(1)求证:△BOE≌△DOF;
(2)若BD=EF,连接DE、BF,判断四边形EBFD的形状,并证明你的结论.
参考答案
1.C
2.B.
3.C.
4.A.
5.B;
6.D
7.B
8.B.
10.B.
11.答案为:AC⊥BD
12.答案为:75°
13.答案为:67.5°,
14.答案为:5
15.答案为:;
16.答案为:4.8.
17.解:添加的条件是BE=DF(答案不唯一).
证明:∵四边形ABCD是矩形,
∴AB∥CD,AB=CD,
∴∠ABD=∠BDC,
又∵BE=DF(添加),
∴△ABE≌△CDF(SAS),
∴AE=CF.
18.解:当F为BC上的中点时,△FDE是等腰三角形,
证明:∵DC⊥DB,F为BC上的中点,∴DF=0.5BC,
∵BE⊥EC,F为BC上的中点,∴EF=0.5BC,∴DF=EF,
∴△FDE是等腰三角形。
19.证明:∵AC=AB,AD=AE,∠BAD=∠CAE,
∴∠BAD-∠CAB=∠CAE-∠CAB,即∠CAD=∠BAE.
∴△ADC≌△AEB(SAS).
∴DC=BE.
又∵DE=BC,
∴四边形BCDE是平行四边形.
连接BD,CE.
∵AB=AC,AD=AE,∠BAD=∠CAE,
∴△ABD≌△ACE(SAS).
∴BD=CE.
∴四边形BCDE是矩形.
20.(1)证明:∵四边形ABCD是平行四边形,
∴BO=DO,AO=OC,
∵AE=CF,
∴AO﹣AE=OC﹣CF,即:OE=OF,
在△BOE和△DOF中,
∴△BOE≌△DOF(SAS);
(2)矩形,
证明:∵BO=DO,OE=OF,
∴四边形BEDF是平行四边形,
∵BD=EF,
∴平行四边形BEDF是矩形.