课程类型:新授课—衔接课 年级:三年级上册 学科:数学
课程主题 第3单元 第2课时:巧求长方形、正方形的周长
知识点1:分割、拼接图形的周长
【新知精讲】
分割:将一个大长方形或正方形分割成若干个长方形和正方形,那么图形周长就会增加几个长或宽
拼接:将若干个小长方形或正方形合成一个大长方形或正方形,图形周长就会减少几个长或宽。
【典型例题】
例1、(2021三上·相城期末)下图是由4个小正方形拼成的,小伟拿掉其中的一个小正方形发现周长反而增加了,小伟拿走的是( )号正方形。
A. ① B. ②或④ C. ③
【答案】 C
例2、(2020三上·盐城期中)下面由4个边长为1厘米的正方形摆成的图形中,( )的周长最短。
A. B. C.
【答案】 C
例3、(2020三上·仪征期末)用两个长6厘米、宽3厘米的长方形,分别拼成长方形或正方形(如图)。它们的周长是________厘米或________厘米。
【答案】 30;24
例4、(2020三上·江宁期中)把一张周长40厘米的正方形纸片剪成5张同样大的长方形纸片。每张长方形纸片的周长是多少厘米?
【答案】 解:40÷4=10(厘米);
10÷5=2(厘米);
(10+2)×2
=12×2
=24(厘米)
答:每张长方形纸片的周长是24厘米。
【课堂演练】
1、两个图形都是由边长1厘米的小正方形拼成的,关于它们所拼成图形的周长,下列说法正确的是
A. 甲>乙 B. 甲=乙 C. 乙>甲
【答案】 B
2、一段围成边长为48厘米的正方形的铁丝,被剪成了4段相同长度的铁丝,每段可以围成的正方形边长是( )
A. 12厘米 B. 4厘米 C. 10厘米 D. 8厘米
【答案】 A
3、如图用5个完全一样的小长方形拼成一个大长方形,如果大长方形的宽是10厘米,长是________厘米。
【答案】 12
4、把6个长为3厘米,宽为2厘米的小长方形如下图拼成一个四边形,这个四边形的周长是多少?
【答案】 解:3×2=6(厘米)
2×3=6(厘米)
(6+6)×2=24(厘米)
答:这个长方形的周长是24厘米。
知识点2:平移法巧求周长
【新知精讲】
对于一些不规则的比较复杂的几何图形,要求它们的周长,我们可以运用平移的方法,把它转化为标准的长方形或正方形,然后再利用周长公式进行计算。
【典型例题】
例1、(2021三上·鼓楼期末)下面的图形是用同样大小的长方形纸片剪成的,周长最长的是( )。
A. B. C.
【答案】 C
例2、(2020三下·崇川期末)下图中每个小正方形表示1平方厘米,长方形的面积是( )。
A. 7平方厘米 B. 14平方厘米 C. 21平方厘米 D. 28平方厘米
【答案】 D
例3、下图的周长是________米
【答案】 78
例4、估一估,这两个图形的周长相等吗?再算一下.
________米
________米
【答案】 46;46
【课堂演练】
1、甲、乙、丙三张图的周长( )
A. 相等 B. 不确定 C. 甲长 D. 乙长 E. 丙长
【答案】 E
2、图1和图2的一角各有一块糖,甲、乙两只小蚂蚁要从图上放糖的地方出发,转一圈后,再回到出发地点,才能得到喜欢的糖.你认为________只小蚂蚁先吃到糖?(填甲、乙或同时)
【答案】 同时
3、求下列图形的周长。
(1)(2)
【答案】 (1)解:(5+3)×2+2×2=20(毫米)
(2)解:(16+12)×2=56(分米)
知识点3:画示意图解决复杂图形的周长问题
【新知精讲】
在解答比较复杂的关于长方形、正方形周长计算的问题时,生搬硬套公式往往行不通,这时灵活地运用所学知识在解题中显得相当的重要。
解答稍复杂的有关长方形、正方形周长的问题,首先要仔细观察,认真思考,想想已知条件和要求问题之间有什么联系,应该先求什么,再求什么,然后灵活运用长方形、正方形周长公式进行计算。需要我们借助示意图画图分析找出数量之间的关系。
注意:长方形中剪一个最大的正方形,正方形的边长=长方形的宽
【典型例题】
例1、(2020三上·盐城期末)如图,李叔叔从一块长方形木板上锯下一个最大的正方形,正方形周长是24分米,剩下部分的宽是3分米。原来长方形木板的周长是________。
【答案】 30
例2、(2020三上·江宁期中)下图中每个小正方形的边长是1厘米,那么长方形的周长是________厘米.
【答案】 22
例3、在一张纸上画一个边长5厘米的正方形,如果把这个正方形的边延长2厘米,画出一个新的正方形,新正方形的周长是多少厘米.
【答案】 解:边长由5厘米变成7厘米.
(5+2)×4=28(厘米)
新正方形的周长是28厘米.
【课堂演练】
1、下图中,涂色部分是边长均为1cm的正方形,长方形ABCD的周长是________厘米。
【答案】 22
2、用边长20厘米的铁丝围成长方形或正方形(边长为整厘米)怎样围围成的图形面积最大 面积最大是多少·?
【答案】 20÷2=10(厘米)
长为9厘米,宽为1厘米,面积为9×1=9(平方厘米)。
长为8厘米,宽为2厘米,面积为8×2=16(平方厘米)。
长为7厘米,宽为3厘米,面积为7×3=21(平方厘米)。
长为6厘米,宽为4厘米,面积为6×4=24(平方厘米)。
20÷4=5(厘米)
5×5=25(平方厘米)
答:围成正方形时面积最大,是25平方厘米。
1、大正方形的边长是10厘米,小正方形的边长是5厘米,下面图形中,阴影部分面积一样大的有( )个。
A. 2 B. 3 C. 4 D. 5
【答案】 C
2、下面图形是由三个同样大小的正方形重叠组成,接触点是各边的中点,这个图形的周长(单位:厘米)是( )
A. 96厘米 B. 80厘米 C. 64厘米 D. 54厘米
【答案】 C
3、一根长4米的细铁丝,做成边长是2分米的正方形铁丝框架,一共可以做(接头处忽略不计) ( )
A. 2个 B. 6个 C. 20个 D. 5个
【答案】 D
4、估计一下,下图中哪个图形的周长最长________,哪个图形的周长最短.________
【答案】 A;C
5、算一算每个图形的周长。
(1)(2)(3)
(4)(5)(6)
【答案】 (1)(10+5)×2
=15×2
=30(厘米)
(2)6×4=24(分米)
(3)(30+10)×2+5×2
=40×2+5×2
=80+10
=90(厘米)
(4)(8+10)×2
=18×2
=36(米)
(5)(10+4)×2
=14×2
=28(米)
(6)(3+5)×2+2×2
=8×2+2×2
=16+4
=20(毫米)
6、(2021三上·玄武期末)王大伯要在墙边围一块长方形地养鸡,长40米,宽25米。这块地一边靠墙,另外三边用篱笆围。有两种围法可以选择(如图)。哪一种围法用的篱笆少些 只要多少米
【答案】 解:第一种围法:
25×2+40
=50+40
=90(米)
第二种围法:
40×2+25
=80+25
=105(米)
答:第一种围法用的篱笆少些,只要90米。
7、把长2厘米,宽1厘米的长方形按下图所示的方法一层一层地摆,所得的图形周长多少厘米?
【答案】 解:2×4=8(厘米)
1×4=4(厘米)
(8+4)×2=24(厘米)
答:所得的图形周长是24厘米。
8、下图中有6个同样大小的正方形,是用24根火柴搭成的.你能用这些火柴分别搭出7个、8个、9个同样大小的正方形吗
【答案】 解:
9、用4个边长2厘米的小正方形拼成一个大正方形,这个大正方形的周长是多少 如果拼成一个长方形,这个长方形的周长是多少
【答案】 解:(2+2)×4=16(厘米)答:这个长方形的周长是16厘米.
【课后巩固】
】
PAGE课程类型:新授课—衔接课 年级:三年级上册 学科:数学
课程主题 第3单元 第2课时:巧求长方形、正方形的周长
知识点1:分割、拼接图形的周长
【新知精讲】
分割:将一个大长方形或正方形分割成若干个长方形和正方形,那么图形周长就会增加几个长或宽
拼接:将若干个小长方形或正方形合成一个大长方形或正方形,图形周长就会减少几个长或宽。
【典型例题】
例1、(2021三上·相城期末)下图是由4个小正方形拼成的,小伟拿掉其中的一个小正方形发现周长反而增加了,小伟拿走的是( )号正方形。
A. ① B. ②或④ C. ③
例2、(2020三上·盐城期中)下面由4个边长为1厘米的正方形摆成的图形中,( )的周长最短。
A. B. C.
例3、(2020三上·仪征期末)用两个长6厘米、宽3厘米的长方形,分别拼成长方形或正方形(如图)。它们的周长是________厘米或________厘米。
例4、(2020三上·江宁期中)把一张周长40厘米的正方形纸片剪成5张同样大的长方形纸片。每张长方形纸片的周长是多少厘米?
【课堂演练】
1、两个图形都是由边长1厘米的小正方形拼成的,关于它们所拼成图形的周长,下列说法正确的是
A. 甲>乙 B. 甲=乙 C. 乙>甲
2、一段围成边长为48厘米的正方形的铁丝,被剪成了4段相同长度的铁丝,每段可以围成的正方形边长是( )
A. 12厘米 B. 4厘米 C. 10厘米 D. 8厘米
3、如图用5个完全一样的小长方形拼成一个大长方形,如果大长方形的宽是10厘米,长是________厘米。
4、把6个长为3厘米,宽为2厘米的小长方形如下图拼成一个四边形,这个四边形的周长是多少?
知识点2:平移法巧求周长
【新知精讲】
对于一些不规则的比较复杂的几何图形,要求它们的周长,我们可以运用平移的方法,把它转化为标准的长方形或正方形,然后再利用周长公式进行计算。
【典型例题】
例1、(2021三上·鼓楼期末)下面的图形是用同样大小的长方形纸片剪成的,周长最长的是( )。
A. B. C.
例2、(2020三下·崇川期末)下图中每个小正方形表示1平方厘米,长方形的面积是( )。
A. 7平方厘米 B. 14平方厘米 C. 21平方厘米 D. 28平方厘米
例3、下图的周长是________米
例4、估一估,这两个图形的周长相等吗?再算一下.
________米
________米
【课堂演练】
1、甲、乙、丙三张图的周长( )
A. 相等 B. 不确定 C. 甲长 D. 乙长 E. 丙长
2、图1和图2的一角各有一块糖,甲、乙两只小蚂蚁要从图上放糖的地方出发,转一圈后,再回到出发地点,才能得到喜欢的糖.你认为________只小蚂蚁先吃到糖?(填甲、乙或同时)
3、求下列图形的周长。
(1)(2)
知识点3:画示意图解决复杂图形的周长问题
【新知精讲】
在解答比较复杂的关于长方形、正方形周长计算的问题时,生搬硬套公式往往行不通,这时灵活地运用所学知识在解题中显得相当的重要。
解答稍复杂的有关长方形、正方形周长的问题,首先要仔细观察,认真思考,想想已知条件和要求问题之间有什么联系,应该先求什么,再求什么,然后灵活运用长方形、正方形周长公式进行计算。需要我们借助示意图画图分析找出数量之间的关系。
注意:长方形中剪一个最大的正方形,正方形的边长=长方形的宽
【典型例题】
例1、(2020三上·盐城期末)如图,李叔叔从一块长方形木板上锯下一个最大的正方形,正方形周长是24分米,剩下部分的宽是3分米。原来长方形木板的周长是________。
例2、(2020三上·江宁期中)下图中每个小正方形的边长是1厘米,那么长方形的周长是________厘米.
例3、在一张纸上画一个边长5厘米的正方形,如果把这个正方形的边延长2厘米,画出一个新的正方形,新正方形的周长是多少厘米.
【课堂演练】
1、下图中,涂色部分是边长均为1cm的正方形,长方形ABCD的周长是________厘米。
2、用边长20厘米的铁丝围成长方形或正方形(边长为整厘米)怎样围围成的图形面积最大 面积最大是多少·?
1、大正方形的边长是10厘米,小正方形的边长是5厘米,下面图形中,阴影部分面积一样大的有( )个。
A. 2 B. 3 C. 4 D. 5
2、下面图形是由三个同样大小的正方形重叠组成,接触点是各边的中点,这个图形的周长(单位:厘米)是( )
A. 96厘米 B. 80厘米 C. 64厘米 D. 54厘米
3、一根长4米的细铁丝,做成边长是2分米的正方形铁丝框架,一共可以做(接头处忽略不计) ( )
A. 2个 B. 6个 C. 20个 D. 5个
4、估计一下,下图中哪个图形的周长最长________,哪个图形的周长最短.________
5、算一算每个图形的周长。
(1)(2)(3)
(4)(5)(6)
6、(2021三上·玄武期末)王大伯要在墙边围一块长方形地养鸡,长40米,宽25米。这块地一边靠墙,另外三边用篱笆围。有两种围法可以选择(如图)。哪一种围法用的篱笆少些 只要多少米
7、把长2厘米,宽1厘米的长方形按下图所示的方法一层一层地摆,所得的图形周长多少厘米?
8、下图中有6个同样大小的正方形,是用24根火柴搭成的.你能用这些火柴分别搭出7个、8个、9个同样大小的正方形吗
9、用4个边长2厘米的小正方形拼成一个大正方形,这个大正方形的周长是多少 如果拼成一个长方形,这个长方形的周长是多少
【课后巩固】
】
PAGE