圆锥曲线系统复习

文档属性

名称 圆锥曲线系统复习
格式 zip
文件大小 381.5KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2012-09-07 21:24:37

图片预览

文档简介

圆锥曲线
1.圆锥曲线的两个定义:
定义中要重视“括号”内的限制条件:椭圆中,与两个定点F,F的距离的和等于常数,且此常数一定要大于,当常数等于时,轨迹是线段FF,当常数小于时,无轨迹;双曲线中,与两定点F,F的距离的差的绝对值等于常数,且此常数一定要小于|FF|,定义中的“绝对值”与<|FF|不可忽视。若=|FF|,则轨迹是以F,F为端点的两条射线,若﹥|FF|,则轨迹不存在。若去掉定义中的绝对值则轨迹仅表示双曲线的一支。
如(1)已知定点,在满足下列条件的平面上动点P的轨迹中是椭圆的是 A. B. C. D.(答:C);
(2)方程表示的曲线是_____(答:双曲线的左支)
2.圆锥曲线的标准方程(标准方程是指中心(顶点)在原点,坐标轴为对称轴时的标准位置的方程):
(1)椭圆:焦点在轴上时()(参数方程,其中为参数),焦点在轴上时=1()。方程表示椭圆的充要条件是什么?(ABC≠0,且A,B,C同号,A≠B)。如(1)已知方程表示椭圆,则的取值范围为____(答:);(2)若,且,则的最大值是____,的最小值是___(答:)
(2)双曲线:焦点在轴上: =1,焦点在轴上:=1()。方程表示双曲线的充要条件是什么?(ABC≠0,且A,B异号)。如(1)双曲线的离心率等于,且与椭圆有公共焦点,则该双曲线的方程_______(答:);(2)设中心在坐标原点,焦点、在坐标轴上,离心率的双曲线C过点,则C的方程为_______(答:)
(3)抛物线:开口向右时,开口向左时,开口向上时,开口向下时。
3.圆锥曲线焦点位置的判断(首先化成标准方程,然后再判断):
(1)椭圆:由,分母的大小决定,焦点在分母大的坐标轴上。
如已知方程表示焦点在y轴上的椭圆,则m的取值范围是__(答:)
(2)双曲线:由,项系数的正负决定,焦点在系数为正的坐标轴上;
(3)抛物线:焦点在一次项的坐标轴上,一次项的符号决定开口方向。
特别提醒:(1)在求解椭圆、双曲线问题时,首先要判断焦点位置,焦点F,F的位置,是椭圆、双曲线的定位条件,它决定椭圆、双曲线标准方程的类型,而方程中的两个参数,确定椭圆、双曲线的形状和大小,是椭圆、双曲线的定形条件;在求解抛物线问题时,首先要判断开口方向;(2)在椭圆中,最大,,在双曲线中,最大,。
4.圆锥曲线的几何性质:
(1)椭圆(以()为例):①范围:;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),四个顶点,其中长轴长为2,短轴长为2;④准线:两条准线; ⑤离心率:,椭圆,越小,椭圆越圆;越大,椭圆越扁。
如(1)若椭圆的离心率,则的值是__(答:3或);(2)以椭圆上一点和椭圆两焦点为顶点的三角形的面积最大值为1时,则椭圆长轴的最小值为__(答:)
(2)双曲线(以()为例):①范围:或;②焦点:两个焦点;③对称性:两条对称轴,一个对称中心(0,0),两个顶点,其中实轴长为2,虚轴长为2,特别地,当实轴和虚轴的长相等时,称为等轴双曲线,其方程可设为;④准线:两条准线; ⑤离心率:,双曲线,等轴双曲线,越小,开口越小,越大,开口越大;⑥两条渐近线:。
如(1)双曲线的渐近线方程是,则该双曲线的离心率等于______(答:或);
(2)双曲线的离心率为,则= (答:4或);
(3)设双曲线(a>0,b>0)中,离心率e∈[,2],则两条渐近线夹角θ的取值范围是________(答:);
(3)抛物线(以为例):①范围:;②焦点:一个焦点,其中的几何意义是:焦点到准线的距离;③对称性:一条对称轴,没有对称中心,只有一个顶点(0,0);④准线:一条准线; ⑤离心率:,抛物线。
如设,则抛物线的焦点坐标为________(答:);
5、点和椭圆()的关系:(1)点在椭圆外;(2)点在椭圆上=1;(3)点在椭圆内
6.直线与圆锥曲线的位置关系:
(1)相交:直线与椭圆相交; 直线与双曲线相交,但直线与双曲线相交不一定有,当直线与双曲线的渐近线平行时,直线与双曲线相交且只有一个交点,故是直线与双曲线相交的充分条件,但不是必要条件;直线与抛物线相交,但直线与抛物线相交不一定有,当直线与抛物线的对称轴平行时,直线与抛物线相交且只有一个交点,故也仅是直线与抛物线相交的充分条件,但不是必要条件。
如(1)若直线y=kx+2与双曲线x2-y2=6的右支有两个不同的交点,则k的取值范围是_______(答:(-,-1));
(2)直线y―kx―1=0与椭圆恒有公共点,则m的取值范围是_______(答:[1,5)∪(5,+∞));
(3)过双曲线的右焦点直线交双曲线于A、B两点,若│AB︱=4,则这样的直线有_____条(答:3);
(2)相切:直线与椭圆相切;直线与双曲线相切;直线与抛物线相切;
(3)相离:直线与椭圆相离;直线与双曲线相离;直线与抛物线相离。
特别提醒:(1)直线与双曲线、抛物线只有一个公共点时的位置关系有两种情形:相切和相交。如果直线与双曲线的渐近线平行时,直线与双曲线相交,但只有一个交点;如果直线与抛物线的轴平行时,直线与抛物线相交,也只有一个交点;(2)过双曲线=1外一点的直线与双曲线只有一个公共点的情况如下:①P点在两条渐近线之间且不含双曲线的区域内时,有两条与渐近线平行的直线和分别与双曲线两支相切的两条切线,共四条;②P点在两条渐近线之间且包含双曲线的区域内时,有两条与渐近线平行的直线和只与双曲线一支相切的两条切线,共四条;③P在两条渐近线上但非原点,只有两条:一条是与另一渐近线平行的直线,一条是切线;④P为原点时不存在这样的直线;(3)过抛物线外一点总有三条直线和抛物线有且只有一个公共点:两条切线和一条平行于对称轴的直线。
如 (1)过点作直线与抛物线只有一个公共点,这样的直线有______(答:2);
(2)过点(0,2)与双曲线有且仅有一个公共点的直线的斜率的取值范围为______(答:);
(3)过双曲线的右焦点作直线交双曲线于A、B两点,若4,则满足条件的直线有____条(答:3);
(4)对于抛物线C:,我们称满足的点在抛物线的内部,若点在抛物线的内部,则直线:与抛物线C的位置关系是_______(答:相离);
(5)过抛物线的焦点作一直线交抛物线于P、Q两点,若线段PF与FQ的长分别是、,则_______(答:1);
(6)设双曲线的右焦点为,右准线为,设某直线交其左支、右支和右准线分别于,则和的大小关系为___________(填大于、小于或等于) (答:等于);
(7)求椭圆上的点到直线的最短距离(答:);
(8)直线与双曲线交于、两点。①当为何值时,、分别在双曲线的两支上?②当为何值时,以AB为直径的圆过坐标原点?(答:①;②);
7、焦点三角形(椭圆或双曲线上的一点与两焦点所构成的三角形)问题:常利用第一定义和正弦、余弦定理求解。设椭圆或双曲线上的一点到两焦点的距离分别为,焦点的面积为,则在椭圆中, ①=,且当即为短轴端点时,最大为=;②,当即为短轴端点时,的最大值为bc;对于双曲线的焦点三角形有:①;②。
如(1)短轴长为,离心率的椭圆的两焦点为、,过作直线交椭圆于A、B两点,则的周长为________(答:6);
(2)设P是等轴双曲线右支上一点,F1、F2是左右焦点,若,|PF1|=6,则该双曲线的方程为 (答:);
(3)椭圆的焦点为F1、F2,点P为椭圆上的动点,当·<0时,点P的横坐标的取值范围是 (答:);
(4)双曲线的虚轴长为4,离心率e=,F1、F2是它的左右焦点,若过F1的直线与双曲线的左支交于A、B两点,且是与等差中项,则=__________(答:);
(5)已知双曲线的离心率为2,F1、F2是左右焦点,P为双曲线上一点,且,.求该双曲线的标准方程(答:);
8、抛物线中与焦点弦有关的一些几何图形的性质:(1)以过焦点的弦为直径的圆和准线相切;(2)设AB为焦点弦, M为准线与x轴的交点,则∠AMF=∠BMF;(3)设AB为焦点弦,A、B在准线上的射影分别为A,B,若P为AB的中点,则PA⊥PB;(4)若AO的延长线交准线于C,则BC平行于x轴,反之,若过B点平行于x轴的直线交准线于C点,则A,O,C三点共线。                              
9、弦长公式:若直线与圆锥曲线相交于两点A、B,且分别为A、B的横坐标,则=,若分别为A、B的纵坐标,则=,若弦AB所在直线方程设为,则=。特别地,焦点弦(过焦点的弦):焦点弦的弦长的计算,一般不用弦长公式计算,而是将焦点弦转化为两条焦半径之和后,利用第二定义求解。
如(1)过抛物线y2=4x的焦点作直线交抛物线于A(x1,y1),B(x2,y2)两点,若x1+x2=6,那么|AB|等于_______(答:8);
(2)过抛物线焦点的直线交抛物线于A、B两点,已知|AB|=10,O为坐标原点,则ΔABC重心的横坐标为_______(答:3);
11、圆锥曲线的中点弦问题:遇到中点弦问题常用“韦达定理”或“点差法”求解。在椭圆中,以为中点的弦所在直线的斜率k=-;在双曲线中,以为中点的弦所在直线的斜率k=;在抛物线中,以为中点的弦所在直线的斜率k=。
如(1)如果椭圆弦被点A(4,2)平分,那么这条弦所在的直线方程是 (答:);
(2)已知直线y=-x+1与椭圆相交于A、B两点,且线段AB的中点在直线L:x-2y=0上,则此椭圆的离心率为_______(答:);
(3)试确定m的取值范围,使得椭圆上有不同的两点关于直线对称(答:);
特别提醒:因为是直线与圆锥曲线相交于两点的必要条件,故在求解有关弦长、对称问题时,务必别忘了检验!
12.你了解下列结论吗?
(1)双曲线的渐近线方程为;
(2)以为渐近线(即与双曲线共渐近线)的双曲线方程为为参数,≠0)。
如与双曲线有共同的渐近线,且过点的双曲线方程为_______(答:)
(3)中心在原点,坐标轴为对称轴的椭圆、双曲线方程可设为;
(4)椭圆、双曲线的通径(过焦点且垂直于对称轴的弦)为,焦准距(焦点到相应准线的距离)为,抛物线的通径为,焦准距为;
(5)通径是所有焦点弦(过焦点的弦)中最短的弦;
(6)若抛物线的焦点弦为AB,,则①;②
(7)若OA、OB是过抛物线顶点O的两条互相垂直的弦,则直线AB恒经过定点
13.动点轨迹方程:
(1)求轨迹方程的步骤:建系、设点、列式、化简、确定点的范围;
(2)求轨迹方程的常用方法:
①直接法:直接利用条件建立之间的关系;
如已知动点P到定点F(1,0)和直线的距离之和等于4,求P的轨迹方程.(答:或);
②待定系数法:已知所求曲线的类型,求曲线方程――先根据条件设出所求曲线的方程,再由条件确定其待定系数。
如线段AB过x轴正半轴上一点M(m,0),端点A、B到x轴距离之积为2m,以x轴为对称轴,过A、O、B三点作抛物线,则此抛物线方程为 (答:); 
③定义法:先根据条件得出动点的轨迹是某种已知曲线,再由曲线的定义直接写出动点的轨迹方程;
如(1)由动点P向圆作两条切线PA、PB,切点分别为A、B,∠APB=600,则动点P的轨迹方程为 (答:);
(2)点M与点F(4,0)的距离比它到直线的距离小于1,则点M的轨迹方程是_______ (答:);
(3) 一动圆与两圆⊙M:和⊙N:都外切,则动圆圆心的轨迹为 (答:双曲线的一支);
④代入转移法:动点依赖于另一动点的变化而变化,并且又在某已知曲线上,则可先用的代数式表示,再将代入已知曲线得要求的轨迹方程;
如动点P是抛物线上任一点,定点为,点M分所成的比为2,则M的轨迹方程为__________(答:);
⑤参数法:当动点坐标之间的关系不易直接找到,也没有相关动点可用时,可考虑将均用一中间变量(参数)表示,得参数方程,再消去参数得普通方程)。
如(1)AB是圆O的直径,且|AB|=2a,M为圆上一动点,作MN⊥AB,垂足为N,在OM上取点,使,求点的轨迹。(答:);
(2)若点在圆上运动,则点的轨迹方程是____(答:);
(3)过抛物线的焦点F作直线交抛物线于A、B两点,则弦AB的中点M的轨迹方程是________(答:);
注意:①如果问题中涉及到平面向量知识,那么应从已知向量的特点出发,考虑选择向量的几何形式进行“摘帽子或脱靴子”转化,还是选择向量的代数形式进行“摘帽子或脱靴子”转化。
如已知椭圆的左、右焦点分别是F1(-c,0)、F2(c,0),Q是椭圆外的动点,满足点P是线段F1Q与该椭圆的交点,点T在线段F2Q上,并且满足(1)设为点P的横坐标,证明;(2)求点T的轨迹C的方程;(3)试问:在点T的轨迹C上,是否存在点M,使△F1MF2的面积S=若存在,求∠F1MF2的正切值;若不存在,请说明理由. (答:(1)略;(2);(3)当时不存在;当时存在,此时∠F1MF2=2)
②曲线与曲线方程、轨迹与轨迹方程是两个不同的概念,寻求轨迹或轨迹方程时应注意轨迹上特殊点对轨迹的“完备性与纯粹性”的影响.
③在与圆锥曲线相关的综合题中,常借助于“平面几何性质”数形结合(如角平分线的双重身份――对称性、利用到角公式)、“方程与函数性质”化解析几何问题为代数问题、“分类讨论思想”化整为零分化处理、“求值构造等式、求变量范围构造不等关系”等等.
④如果在一条直线上出现“三个或三个以上的点”,那么可选择应用“斜率或向量”为桥梁转化.
14、解析几何与向量综合时可能出现的向量内容:
(1) 给出直线的方向向量或;
(2)给出与相交,等于已知过的中点;
(3)给出,等于已知是的中点;
(4)给出,等于已知与的中点三点共线;
(5) 给出以下情形之一:①;②存在实数;③若存在实数,等于已知三点共线.
(6) 给出,等于已知是的定比分点,为定比,即
(7) 给出,等于已知,即是直角,给出,等于已知是钝角, 给出,等于已知是锐角,
(8)给出,等于已知是的平分线/
(9)在平行四边形中,给出,等于已知是菱形;
(10) 在平行四边形中,给出,等于已知是矩形;
(11)在中,给出,等于已知是的外心(三角形外接圆的圆心,三角形的外心是三角形三边垂直平分线的交点);
(12) 在中,给出,等于已知是的重心(三角形的重心是三角形三条中线的交点);
(13)在中,给出,等于已知是的垂心(三角形的垂心是三角形三条高的交点);
(14)在中,给出等于已知通过的内心;
(15)在中,给出等于已知是的内心(三角形内切圆的圆心,三角形的内心是三角形三条角平分线的交点);
(16) 在中,给出,等于已知是中边的中线;
求解圆锥曲线问题的几种措施
圆锥曲线中的知识综合性较强,因而解题时就需要运用多种基础知识、采用多种数学手段来处理问题。熟记各种定义、基本公式、法则固然重要,但要做到迅速、准确解题,还须掌握一些方法和技巧。
一. 紧扣定义,灵活解题
灵活运用定义,方法往往直接又明了。
例1. 已知点A(3,2),F(2,0),双曲线,P为双曲线上一点。
求的最小值。
解析:如图所示,
双曲线离心率为2,F为右焦点,由第二定律知即点P到准线距离。
二. 引入参数,简捷明快
参数的引入,尤如化学中的催化剂,能简化和加快问题的解决。
例2. 求共焦点F、共准线的椭圆短轴端点的轨迹方程。
解:取如图所示的坐标系,设点F到准线的距离为p(定值),椭圆中心坐标为M(t,0)(t为参数)
,而
再设椭圆短轴端点坐标为P(x,y),则
消去t,得轨迹方程
三. 数形结合,直观显示
将“数”与“形”两者结合起来,充分发挥“数”的严密性和“形”的直观性,以数促形,用形助数,结合使用,能使复杂问题简单化,抽象问题形象化。熟练的使用它,常能巧妙地解决许多貌似困难和麻烦的问题。
例3. 已知,且满足方程,又,求m范围。
解析:的几何意义为,曲线上的点与点(-3,-3)连线的斜率,如图所示
四. 应用平几,一目了然
用代数研究几何问题是解析几何的本质特征,因此,很多“解几”题中的一些图形性质就和“平几”知识相关联,要抓住关键,适时引用,问题就会迎刃而解。
例4. 已知圆和直线的交点为P、Q,则的值为________。
解:
五. 应用平面向量,简化解题
向量的坐标形式与解析几何有机融为一体,因此,平面向量成为解决解析几何知识的有力工具。
例5. 已知椭圆:,直线:,P是上一点,射线OP交椭圆于一点R,点Q在OP上且满足,当点P在上移动时,求点Q的轨迹方程。
分析:考生见到此题基本上用的都是解析几何法,给解题带来了很大的难度,而如果用向量共线的条件便可简便地解出。
解:如图,共线,设,,,则,
点R在椭圆上,P点在直线上


化简整理得点Q的轨迹方程为:
(直线上方部分)
六. 应用曲线系,事半功倍
利用曲线系解题,往往简捷明快,收到事半功倍之效。所以灵活运用曲线系是解析几何中重要的解题方法和技巧之一。
例6. 求经过两圆和的交点,且圆心在直线上的圆的方程。
解:设所求圆的方程为:
则圆心为,在直线上
解得
故所求的方程为
七. 巧用点差,简捷易行
在圆锥曲线中求线段中点轨迹方程,往往采用点差法,此法比其它方法更简捷一些。
例7. 过点A(2,1)的直线与双曲线相交于两点P1、P2,求线段P1P2中点的轨迹方程。
解:设,,则
<2>-<1>得

设P1P2的中点为,则
又,而P1、A、M、P2共线
,即
中点M的轨迹方程是
解析几何题怎么解
高考解析几何试题一般共有4题(2个选择题, 1个填空题, 1个解答题), 共计30分左右, 考查的知识点约为20个左右. 其命题一般紧扣课本, 突出重点, 全面考查. 选择题和填空题考查直线, 圆, 圆锥曲线, 参数方程和极坐标系中的基础知识. 解答题重点考查圆锥曲线中的重要知识点, 通过知识的重组与链接, 使知识形成网络, 着重考查直线与圆锥曲线的位置关系, 求解有时还要用到平几的基本知识,这点值得考生在复课时强化.
例1 已知点T是半圆O的直径AB上一点,AB=2、OT=t (0(1)写出直线的方程; (2)计算出点P、Q的坐标;
(3)证明:由点P发出的光线,经AB反射后,反射光线通过点Q.
讲解: 通过读图, 看出点的坐标.
(1 ) 显然, 于是 直线
的方程为;
(2)由方程组解出、;
(3), .
由直线PT的斜率和直线QT的斜率互为相反数知,由点P发出的光线经点T反射,反射光线通过点Q.
需要注意的是, Q点的坐标本质上是三角中的万能公式, 有趣吗
例2 已知直线l与椭圆有且仅有一个交点Q,且与x轴、y轴分别交于R、S,求以线段SR为对角线的矩形ORPS的一个顶点P的轨迹方程.
讲解:从直线所处的位置, 设出直线的方程,
由已知,直线l不过椭圆的四个顶点,所以设直线l的方程为
代入椭圆方程 得
化简后,得关于的一元二次方程
于是其判别式
由已知,得△=0.即 ①
在直线方程中,分别令y=0,x=0,求得
令顶点P的坐标为(x,y), 由已知,得
代入①式并整理,得 , 即为所求顶点P的轨迹方程.
方程形似椭圆的标准方程, 你能画出它的图形吗
例3已知双曲线的离心率,过的直线到原点的距离是
(1)求双曲线的方程;
(2)已知直线交双曲线于不同的点C,D且C,D都在以B为圆心的圆上,求k的值.
讲解:∵(1)原点到直线AB:的距离.
故所求双曲线方程为
(2)把中消去y,整理得 .
设的中点是,则

故所求k=±.     为了求出的值, 需要通过消元, 想法设法建构的方程.
例4 已知椭圆C的中心在原点,焦点F1、F2在x轴上,点P为椭圆上的一个动点,且∠F1PF2的最大值为90°,直线l过左焦点F1与椭圆交于A、B两点,△ABF2的面积最大值为12.
(1)求椭圆C的离心率; (2)求椭圆C的方程.
讲解:(1)设, 对 由余弦定理, 得

解出
(2)考虑直线的斜率的存在性,可分两种情况:
i) 当k存在时,设l的方程为………………①
椭圆方程为 由 得 .
于是椭圆方程可转化为 ………………②
将①代入②,消去得 ,
整理为的一元二次方程,得 .
则x1、x2是上述方程的两根.且,,
AB边上的高
ii) 当k不存在时,把直线代入椭圆方程得
由①②知S的最大值为 由题意得=12 所以
故当△ABF2面积最大时椭圆的方程为:
下面给出本题的另一解法,请读者比较二者的优劣:
设过左焦点的直线方程为:…………①
(这样设直线方程的好处是什么?还请读者进一步反思反思.)
椭圆的方程为:
由得:于是椭圆方程可化为:……②
把①代入②并整理得:
于是是上述方程的两根.
,
AB边上的高,
从而
当且仅当m=0取等号,即
由题意知, 于是 .
故当△ABF2面积最大时椭圆的方程为:
例5 已知直线与椭圆相交于A、B两点,且线段AB的中点在直线上.(1)求此椭圆的离心率;
(2 )若椭圆的右焦点关于直线的对称点的在圆上,求此椭圆的方程.
讲解:(1)设A、B两点的坐标分别为 得
,
根据韦达定理,得
∴线段AB的中点坐标为().
由已知得,故椭圆的离心率为 .
(2)由(1)知从而椭圆的右焦点坐标为 设关于直线的对称点为解得
由已知得 ,故所求的椭圆方程为 .
例6 已知⊙M:轴上的动点,QA,QB分别切⊙M于A,B两点,
(1)如果,求直线MQ的方程;(2)求动弦AB的中点P的轨迹方程.
讲解:(1)由,可得
由射影定理,得 在Rt△MOQ中,
,故,
所以直线AB方程是
(2)连接MB,MQ,设由点M,P,Q在一直线上,得
由射影定理得即
把(*)及(**)消去a,并注意到,可得
适时应用平面几何知识,这是快速解答本题的要害所在,还请读者反思其中的奥妙.
例7 如图,在Rt△ABC中,∠CBA=90°,AB=2,AC=。DO⊥AB于O点,OA=OB,DO=2,曲线E过C点,动点P在E上运动,且保持| PA |+| PB |的值不变.
(1)建立适当的坐标系,求曲线E的方程;
(2)过D点的直线L与曲线E相交于不同的两点M、N且M在D、N之间,设,试确定实数的取值范围.
讲解: (1)建立平面直角坐标系, 如图所示∵| PA |+| PB |=| CA |+| CB |   y=∴动点P的轨迹是椭圆∵∴曲线E的方程是 .
(2)设直线L的方程为 , 代入曲线E的方程,得设M1(, 则
i) L与y轴重合时,
ii) L与y轴不重合时, 由①得 又∵,
∵ 或 ∴0<<1 ,
∴∵
而 ∴∴ ∴ ,
,∴的取值范围是 .
值得读者注意的是,直线L与y轴重合的情况易于遗漏,应当引起警惕.
例8 直线过抛物线的焦点,且与抛物线相交于A两点.
(1)求证:;(2)求证:对于抛物线的任意给定的一条弦CD,直线l不是CD的垂直平分线.
讲解: (1)易求得抛物线的焦点. 若l⊥x轴,则l的方程为.若l不垂直于x轴,可设,代入抛物线方程整理得. 综上可知 .
(2)设,则CD的垂直平分线的方程为
假设过F,则整理得
,. 这时的方程为y=0,从而与抛物线只相交于原点. 而l与抛物线有两个不同的交点,因此与l不重合,l不是CD的垂直平分线.
此题是课本题的深化,你能够找到它的原形吗?知识在记忆中积累,能力在联想中提升. 课本是高考试题的生长点,复课切忌忘掉课本!
例9 某工程要将直线公路l一侧的土石,通过公路上的两个道口A和B,沿着道路AP、BP运往公路另一侧的P处,PA=100m,PB=150m,∠APB=60°,试说明怎样运土石最省工?
讲解: 以直线l为x轴,线段AB的中点为原点对立直角坐标系,则在l一侧必存在经A到P和经B到P路程相等的点,设这样的点为M,则|MA|+|AP|=|MB|+|BP|,即|MA|-|MB|=|BP|-|AP|=50,
,∴M在双曲线的右支上.
故曲线右侧的土石层经道口B沿BP运往P处,曲线左侧的土石层经道口A沿AP运往P处,按这种方法运土石最省工.
也可这样求解:
A O B
C


同课章节目录