七年级数学2.3相反数与绝对值

文档属性

名称 七年级数学2.3相反数与绝对值
格式 zip
文件大小 15.7KB
资源类型 教案
版本资源 青岛版
科目 数学
更新时间 2012-09-09 09:25:00

图片预览

文档简介

2.3相反数与绝对值
【学习目标】1、理解相反数 的概念及在数轴上的位置特征。
2、借助数轴,初步理解绝对值的概念,能求一个数的绝对值。
3、会利用绝对值比较两个数的大小。
【学习重点】相反数的概念,在数轴上表示绝对值的意义,及两个负数的大小比较。
【学习难点】绝对值的意义,及两个负数的大小比较。
【学习过程】
一、学前准备
1.预习疑难摘要:
2. 3的倒数是 , 的倒数 ,0 倒数。
3.作一数轴表示:2与-2; 与 ;5与-5并观察每对数位置特征。

二、探究活动
(一)自主学习
1、观察所作数轴:观察2与-2; ;5与-5它们的共同特征:都是只有 不同的两个数。我们称其中一个是另一个的相反数,2是-2的相反数,-2是2的相反数,或者说2与-2互为相反数。例如:9是 相反数,7的相反数是 ;-2.4与 的相反数分制是 。
规定0的相反数就是0。
2、在数轴上,表示2与-2;5与-5的点分别在什么位置?它们到原点的距离各是多少?这里我们将数轴上,表示数的点到原点的距离称为这个数的绝对值。
于是有:2的绝对值是2,记作︱2︱=2;-3的绝对值3,记作︱-3︱=3,
+3的绝对值是 ;记作 ; 的绝对值 ,记作 。
︱0︱= ;︱-7.8︱= ;︱+7.8︱=
再观察数轴,思考:相反数的绝对值有何关系?正数、负数、0的绝对值与它本身有何关系?
归纳:①互为相反的两个数绝对值 。 ② 正数的绝对值是      
文字语言 负数的绝对值是 ;0的绝对值是
例如:︱+3︱= ;︱-3︱= ;︱︱= ;︱- ︱=
︱5︱= ;︱-7.8︱= ;︱0︱= .
4、你会比较-1、-3的大小吗?它们的绝对值大小有什么关系?
归纳:两个负数,绝对值     反而小。
(二)合作交流
利用上面的结论比较与的大小
三、巩固练习、
1、下面的两个数中互为相反数的是 ( )
A、 和 0.2 B、 和-0.333 C、-2.25和 D、5和-(-5)
2、化简:-(+3)= (+3的相反数是-3)
-(-4)= (-4的相反数等于+4)
-(+4)= +(-9)= -(-6)= +(+7)=
四、反思拓展
1、相反数等于本身的数有 ,相反数大于本身的数是 。
2、绝对值最小的数是 。绝对值等于本身的数是 。
3、无论正数、负数、0,它们的绝对值一定不会是 ,即一个数的绝对值总是一个非负数。用式子表示为:︱a︱≥0
五、小结反思
这节课我学会了: ;
我的困惑: 。
六、达标检测
1、+1.3的相反数 ;-3的相反数 。
2、在数轴上表示6的点在原点的 旁,并且到原点的距离为 个单位;︱6︱= 。到原点的距离为 6 个单位的点所表示的数       
3、判断:A、正数和负数互为相反数( ),B、0.25与 互为相反数( ),
C、一个正数的相反数是一个负数( ),D、0没有相反数( )。
4、已知︱a︱= a,下列说法正确的( )
A、a>0 B、a<0 C、a≥0 D、a≤0
5、化简:-(+4) -(+8)= -(-9)= +(+8.07)=
6、如果a=-13,则-a= ;如果a=5.4,则-a= 。
如果-x=-6;则x= 。如-x=-9,则x= 。
7、比较大小:①-1与-5;② 与-
七、自我评价
八、布置作业