2021年华师大版数学八年级上册
14.2《勾股定理的应用》同步练习卷
一、选择题
1.下列各组数中不能作为直角三角形的三边长的是( )
A.6,8,10 B.5,12,13 C.1,2,3 D.9,12,15
2.满足下列条件的△ABC不是直角三角形的是( )
A.BC=8,AC=15,AB=17 B.BC:AC:AB=3:4:5
C.∠A+∠B=∠C D.∠A:∠B:∠C=3:4:5
3.三角形的三边长a,b,c满足2ab=(a+b)2-c2,则此三角形是( )
A.钝角三角形 B.锐角三角形 C.直角三角形 D.等边三角形
4.小明想知道学校旗杆的高度,他发现旗杆上的绳子垂到地面还多1米,当他把绳子的下端拉开5米后,发现下端刚好接触地面,则旗杆的高是( ).
A.8米 B.10米 C.12米 D.14米
5.如图,有一个水池,其底面是边长为16尺的正方形,一根芦苇AB生长在它的正中央,高出水面部分BC的长为2尺,如果把该芦苇沿与水池边垂直的方向拉向岸边,那么芦苇的顶部B恰好碰到岸边的B′,则这根芦苇AB的长是( )
A.15尺 B.16尺 C.17尺 D.18尺
6.将一根长24 cm的筷子,置于底面直径为5cm、高为12cm的圆柱形水杯中,设筷子露在杯子外面的长为hcm,则h的取值范围是( )
A.5≤h≤12 B.5≤h≤24 C.11≤h≤12 D.12≤h≤24
7.如图,矩形ABCD中,AB=3,AD=1,AB在数轴上,若以点A为圆心,对角线AC的长为半径作弧交数轴的正半轴于M,则点M表示的实数为( )
A.5 B. C. D.
8.如图所示,一场暴雨过后,垂直于地面的一棵树在距地面1米处折断,树尖B恰好碰到地面,经测量AB=2米,则树高为( )
A.米 B.米 C.(+1)米 D.3米
9.如果梯子的底端离建筑物5m,那么长为13m梯子可以达到该建筑物的高度是( )
A.12m B. 14m C.15m D.13m
10.如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了( )米.
A.0.5 B.1 C.1.5 D.2
二、填空题
11.小明向东走6m后,沿另一方向又走了8m,再沿第三个方向走了10m回到原地,小明向东走6m后是向 方向走的(填方位).
12.如果△ABC的三边长a,b,c满足关系式(a-24)2+∣b-18∣+∣c-30∣=0,则△ABC的形状是 。
13.小明同学要做一个直角三角形小铁架,他现有4根长度分别为4cm、6cm、8cm、10cm的铁棒,可用于制作成直角三角形铁架的三条铁棒分别是____________;
14.如图,学校有一块长方形花铺,有极少数人为了避开拐角走“捷径”,在花铺内走出了一条“路”.他们仅仅少走了 步路(假设2步为1米),却踩伤了花草.
15.一艘轮船以16km/h的速度离开港口向东北方向航行,另一艘轮船同时离开港口以30km/h的速度向东南方向航行,它们离开港口半小时后相距 km.
16.如图所示的图形中,所有的四边形都是正方形,所有的三角形都是直角三角形,若正方形A,B,C,D的面积和是49cm2,则其中最大的正方形S的边长为 cm.
三、解答题
17.我校要对如图所示的一块地进行绿化,已知AD=4米,CD=3米,AD⊥DC,AB=13米,BC=12米,求这块地的面积.
18.如图,已知∠ADC=90°,AD=8,CD=6,AB=26,BC=24.
(1)证明:△ABC是直角三角形.
(2)请求图中阴影部分的面积.
19.为了丰富少年儿童的业余生活,某社区要在如图中的AB所在的直线上建一图书室,本社区有两所学校所在的位置在点C和点D处,CA⊥AB于A,DB⊥AB于B.已知AB=2.5km,CA=1.5km,DB=1.0km,试问:图书室E应该建在距点A多少km处,才能使它到两所学校的距离相等?
20.台风是一种自然灾害,它以台风中心为圆心,在周围数千米范围内形成气旋风暴,有极强的破坏力.根据气象观测,距沿海某城市A的正南方向220 km的B处有一台风中心,其中心最大风力为12级,每远离台风中心20 km,风力就会减弱一级.该台风中心正以15 km/h的速度沿北偏东30°方向往C处移动,且台风中心风力不变.若城市所受风力达到或超过四级,则称受台风影响.该城市是否受到该台风的影响?请说明理由.
参考答案
1.答案为:C.
2.答案为:D.
3.答案为:C
4.答案为:C
5.答案为:C.
6.答案为:C;
7.答案为:D
8.答案为:C
9.答案为:A
10.答案为:A.
11.答案为:北或南;
12.答案为:直角三角形
13.答案为:6cm、8cm、10cm
14.答案为:8.
15.答案为:17.
16.答案为:7.
17.解:连接AC.由勾股定理可知
△ABC是直角三角形,故所求面积为24cm2.
18.解:(1)证明:∵在Rt△ADC中,∠ADC=90°,AD=8,CD=6,
∴AC2=AD2+CD2=82+62=100,
∴AC=10(取正值).
在△ABC中,∵AC2+BC2=102+242=676,AB2=262=676,
∴AC2+BC2=AB2,
∴△ABC为直角三角形;
(2)解:S阴影=SRt△ABC﹣SRt△ACD
=×10×24﹣×8×6=96.
19.解:由题意可得:设AE=xkm,则EB=(2.5﹣x)km,
∵AC2+AE2=EC2,BE2+DB2=ED2,EC=DE,
∴AC2+AE2=BE2+DB2,
∴1.52+x2=(2.5﹣x)2+12,
解得:x=1.
答:图书室E应该建在距点A1km处,才能使它到两所学校的距离相等.
20.解:受到台风的影响.理由如下:
如解图,过点A作AC⊥BC于点C.
由题意,得AB=220 km,∠ABC=30°,
∴AC=AB=110 km.
∵110÷20=5.5,
∴12-5.5=6.5>4.
∴该城市受到该台风的影响.