2021-2022学年苏科版八年级数学上册《2.4线段、角的对称性》期中复习测评(附答案)
一.选择题(共9小题,满分36分)
1.如图,在△ABC中,AC=4cm,线段AB的垂直平分线交AC于点N,△BCN的周长是7cm,则BC的长为( )
A.1cm B.2cm C.3cm D.4cm
2.如图,AB∥CD,BP和CP分别平分∠ABC和∠DCB,AD过点P,且与AB垂直.若AD=8,则点P到BC的距离是( )
A.8 B.6 C.4 D.2
3.如图,已知在△ABC中,CD是AB边上的高线,BE平分∠ABC,交CD于点E,BC=5,DE=2,则△BCE的面积等于( )
A.10 B.7 C.5 D.4
4.如图,△ABC的三边AB,BC,CA长分别是20,30,40,其三条角平分线将△ABC分为三个三角形,则S△ABO:S△BCO:S△CAO等于( )
A.1:1:1 B.1:2:3 C.2:3:4 D.3:4:5
5.如图,在Rt△ABC中,∠C=90°,以顶点A为圆心,适当长为半径画弧,分别交AC,AB于点M,N,再分别以点M,N为圆心,大于MN的长为半径画弧,两弧交于点P,作射线AP交边BC于点D,若CD=4,AB=15,则△ABD的面积是( )
A.15 B.30 C.45 D.60
6.如图,AD是△ABC的角平分线,DF⊥AB,垂足为F,DE=DG,△ADG和△AED的面积分别为50和39,则△EDF的面积为( )
A.11 B.5.5 C.7 D.3.5
7.如图,四边形ABDC中,对角线AD平分∠BAC,∠ACD=136°,∠BCD=44°,则∠ADB的度数为( )
A.54° B.50° C.48° D.46°
8.如图,在△ABC中,AB、AC的垂直平分线分别交BC于点E、F,若∠BAC=112°,则∠EAF为( )
A.38° B.40° C.42° D.44°
9.如图,在△ABC中,AB边的中垂线DE,分别与AB边和AC边交于点D和点E,BC边的中垂线FG,分别与BC边和AC边交于点F和点G,又△BEG周长为16,且GE=1,则AC的长为( )
A.13 B.14 C.15 D.16
二.填空题(共9小题,满分36分)
10.如图,△ABC中,D是AB的中点,DE⊥AB,∠ACE+∠BCE=180°,EF⊥AC交AC于F,AC=12,BC=8,则AF= .
11.如图,△ABC中,BD平分∠ABC,BC的中垂线交BC于点E,交BD于点F,连接CF.若∠A=60°,∠ABD=24°,则∠ACF= .
12.如图,点A为∠MON的平分线上一点,过A任意作一条直线分别与∠MON的两边相交于B、C,P为BC中点,过P作BC的垂线交射线OA于点D,若∠MON=115°,则∠BDC的度数为 度.
13.如图,△ABC中,AB的垂直平分线交AC于点E,BC的垂直平分线交AC于点F,点D,G分别是垂足,若AE=6,EF=8,FC=10,则△ABC的周长是 .
14.如图,已知:∠BAC的平分线与BC的垂直平分线相交于点D,DE⊥AB,DF⊥AC,垂足分别为E、F,AB=6,AC=3,则BE= .
15.如图,△ABC中,BC的垂直平分线DP与∠BAC的角平分线相交于点D,垂足为点P,若∠BAC=85°,则∠BDC= .
16.如图,O是△ABC内一点,且O到三边AB、BC、CA的距离OF=OD=OE,若∠BAC=70°,∠BOC= .
17.如图,三条公路两两相交,现计划修建一个油库,如果要求油库到这三条公路的距离都相等,则油库的位置有 个.
18.如图,已知∠ABC、∠EAC的角平分线BP、AP相交于点P,PM⊥BE,PN⊥BF,垂足分别为M、N.现有四个结论:
①CP平分∠ACF;②∠BPC=∠BAC;③∠APC=90°﹣∠ABC;④S△APM+S△CPN>S△APC.其中结论正确的为 .(填写结论的编号)
三.解答题(共8小题,满分48分)
19.如图:在△ABC中,∠C=90°,AD是∠BAC的平分线,DE⊥AB于E,F在AC上,BD=DF,证明:
(1)CF=EB.
(2)AB=AF+2EB.
20.如图,四边形ABCD中,∠B=90°,AB∥CD,M为BC边上的一点,且AM平分∠BAD,DM平分∠ADC.求证:
(1)AM⊥DM;
(2)M为BC的中点.
21.如图,在△ABC中,DM、EN分别垂直平分AC和BC,交AB于M、N两点,DM与EN相交于点F.
(1)若△CMN的周长为15cm,求AB的长;
(2)若∠MFN=70°,求∠MCN的度数.
22.如图,在四边形ABCD中,AD∥BC,E为CD的中点,连接AE、BE,BE⊥AE,延长AE交BC的延长线于点F.求证:
(1)FC=AD;
(2)AB=BC+AD.
23.已知,如图,BD是∠ABC的平分线,AB=BC,点P在BD上,PM⊥AD,PN⊥CD,垂足分别是M、N.试说明:PM=PN.
24.如图,∠AOB=90°,OM平分∠AOB,将直角三角板的顶点P在射线OM上移动,两直角边分别与OA、OB相交于点C、D,问PC与PD相等吗?试说明理由.
25.已知甲村和乙村靠近公路a、b,为了发展经济,甲乙两村准备合建一个工厂,经协商,工厂必须满足以下要求:
(1)到两村的距离相等;
(2)到两条公路的距离相等.你能帮忙确定工厂的位置吗?
26.在△ABC中,D是BC边上的点(不与点B、C重合),连接AD.
(1)如图1,当点D是BC边上的中点时,S△ABD:S△ACD= ;
(2)如图2,当AD是∠BAC的平分线时,若AB=m,AC=n,求S△ABD:S△ACD的值(用含m,n的代数式表示);
(3)如图3,AD平分∠BAC,延长AD到E,使得AD=DE,连接BE,如果AC=2,AB=4,S△BDE=6,那么S△ABC= .
参考答案
一.选择题(共9小题,满分36分)
1.解:∵MN是线段AB的垂直平分线,
∴AN=BN,
∵△BCN的周长是7cm,
∴BN+NC+BC=7(cm),
∴AN+NC+BC=7(cm),
∵AN+NC=AC,
∴AC+BC=7(cm),
又∵AC=4cm,
∴BC=7﹣4=3(cm).
故选:C.
2.解:过点P作PE⊥BC于E,
∵AB∥CD,PA⊥AB,
∴PD⊥CD,
∵BP和CP分别平分∠ABC和∠DCB,
∴PA=PE,PD=PE,
∴PE=PA=PD,
∵PA+PD=AD=8,
∴PA=PD=4,
∴PE=4.
故选:C.
3.解:作EF⊥BC于F,
∵BE平分∠ABC,ED⊥AB,EF⊥BC,
∴EF=DE=2,
∴S△BCE=BC EF=×5×2=5,
故选:C.
4.解:过点O作OD⊥AC于D,OE⊥AB于E,OF⊥BC于F,
∵点O是内心,
∴OE=OF=OD,
∴S△ABO:S△BCO:S△CAO= AB OE: BC OF: AC OD=AB:BC:AC=2:3:4,
故选:C.
5.解:由题意得AP是∠BAC的平分线,过点D作DE⊥AB于E,
又∵∠C=90°,
∴DE=CD,
∴△ABD的面积=AB DE=×15×4=30.
故选:B.
6.解:作DM=DE交AC于M,作DN⊥AC于点N,
∵DE=DG,
∴DM=DG,
∵AD是△ABC的角平分线,DF⊥AB,
∴DF=DN,
在Rt△DEF和Rt△DMN中,
,
∴Rt△DEF≌Rt△DMN(HL),
∵△ADG和△AED的面积分别为50和39,
∴S△MDG=S△ADG﹣S△ADM=50﹣39=11,
S△DNM=S△EDF=S△MDG=×11=5.5.
故选:B.
7.解:如图所示,过D作DE⊥AB于E,DF⊥AC于F,DG⊥BC于G,
∵AD平分∠BAC,DE⊥AB于E,DF⊥AC于F,
∴DF=DE,
又∵∠ACD=136°,∠BCD=44°,
∴∠ACB=92°,∠DCF=44°,
∴CD平分∠BCF,
又∵DF⊥AC于F,DG⊥BC于G,
∴DF=DG,
∴DE=DG,
∴BD平分∠CBE,
∴∠DBE=∠CBE,
∵AD平分∠BAC,
∴∠BAD=∠BAC,
∴∠ADB=∠DBE﹣∠BAD=(∠CBE﹣∠BAC)=∠ACB=×92°=46°,
故选:D.
8.解:∵∠BAC=112°,
∴∠C+∠B=68°,
∵EG、FH分别为AB、AC的垂直平分线,
∴EB=EA,FC=FA,
∴∠EAB=∠B,∠FAC=∠C,
∴∠EAB+∠FAC=68°,
∴∠EAF=44°,
故选:D.
9.解:∵DE是线段AB的中垂线,GF是线段BC的中垂线,
∴EB=EA,GB=GC,
∵△BEG周长为16,
∴EB+GB+EG=16,
∴EA+GC+EG=16,
∴GA+EG+EG+EG+EC=16,
∴AC+2EG=16,
∵EG=1,
∴AC=14,
故选:B.
二.填空题(共9小题,满分36分)
10.解:连接AE,BE,过E作EG⊥BC于G,
∵D是AB的中点,DE⊥AB,
∴DE垂直平分AB,
∴AE=BE,
∵∠ACE+∠BCE=180°,∠ECG+∠BCE=180°,
∴∠ACE=∠ECG,
又∵EF⊥AC,EG⊥BC,
∴EF=EG,∠FEC=∠GEC,
∵CF⊥EF,CG⊥EG,
∴CF=CG,
在Rt△AEF和Rt△BEG中,
,
∴Rt△AEF≌Rt△BEG(HL),
∴AF=BG,
设CF=CG=x,则AF=AC﹣CF=12﹣x,BG=BC+CG=8+x,
∴12﹣x=8+x,
解得x=2,
∴AF=12﹣2=10.
故答案为:10.
11.解:∵BD平分∠ABC,∠ABD=24°,
∴∠ABC=2∠ABD=48°,∠DBC=∠ABD=24°,
∵∠A=60°,
∴∠ACB=180°﹣∠A﹣∠ABC=180°﹣60°﹣48°=72°,
∵FE是BC的中垂线,
∴FB=FC,
∴∠FCB=∠DBC=24°,
∴∠ACF=∠ACB﹣∠FCB=72°﹣24°=48°,
故答案为:48°.
12.解:如图:过D作DE⊥OM于E,DF⊥ON于F,
则∠DEB=∠DFC=∠DFO=90°,
∵∠MON=115°,
∴∠EDF=360°﹣90°﹣90°﹣115°=65°,
∵DE⊥OM,DF⊥ON,OD平分∠MON,
∴DE=DF,
∵P为BC中点,DP⊥BC,
∴BD=CD,
在Rt△DEB和Rt△DFC中,,
∴Rt△DEB≌Rt△DFC(HL),
∴∠EDB=∠CDF,
∴∠BDC=∠BDF+CDF=∠BDF+∠EDB=∠EDF=65°.
故答案为:65.
13.解:连接BE,BF,
∵AB的垂直平分线交AC于点E,BC的垂直平分线交AC于点F,AE=6,FC=10,
∴BE=AE,BF=CF=10,
∵EF=8,
∴BE2+EF2=BF2,
∴∠BEF=90°,
∴∠AEB=90°,
∴AB=AE=6,
∵CE=18,
∴BC===6,
∴△ABC的周长=6+24,
故答案为:6+24.
14.解:连接CD,BD,
∵AD是∠BAC的平分线,DE⊥AB,DF⊥AC,
∴DF=DE,∠F=∠DEB=90°,∠ADF=∠ADE,
∴AE=AF,
∵DG是BC的垂直平分线,
∴CD=BD,
在Rt△CDF和Rt△BDE中,
,
∴Rt△CDF≌Rt△BDE(HL),
∴BE=CF,
∴AB=AE+BE=AF+BE=AC+CF+BE=AC+2BE,
∵AB=6,AC=3,
∴BE=1.5.
故答案为:1.5.
15.解:如图,过点D作DE⊥AB,交AB延长线于点E,DF⊥AC于F,
∵AD是∠BOC的平分线,
∴DE=DF,
∵DP是BC的垂直平分线,
∴BD=CD,
在Rt△DEB和Rt△DFC中,
,
∴Rt△DEB≌Rt△DFC(HL).
∴∠BDE=∠CDF,
∴∠BDC=∠EDF,
∵∠DEB=∠DFC=90°,
∴∠EAF+∠EDF=180°,
∵∠BAC=85°,
∴∠BDC=∠EDF=95°,
故答案为:95°.
16.解:∵OF=OD=OE,
∴OB、OC分别平分∠ABC和∠ACB,
∵∠BAC=70°,
∴∠ABC+∠ACB=180°﹣70°=110°,
∴∠OBC+∠OCB=(∠ABC+∠ACB)=×110°=55°,
∴∠BOC=180°﹣(∠OBC+∠OCB)=180°﹣55°=125°.
故答案为:125°.
17.解:∵三条公路两两相交,要求油库到这三条公路的距离都相等,
∴油库在角平分线的交点处,画出油库位置如图所示.
故答案为:4
18.解:①作PD⊥AC于D.
∵PB平分∠ABC,PA平分∠EAC,PM⊥BE,PN⊥BF,
∴PM=PN,PM=PD,
∴PM=PN=PD,
∴点P在∠ACF的角平分线上(到角的两边距离相等的点在角的平分线上),
故①正确;
②∵PB平分∠ABC,CP平分∠ACF,
∴∠ABC=2∠PBC,∠ACF=2∠PCF,
∵∠ACF=∠ABC+∠BAC,∠PCF=∠PBF+∠BPC,
∴∠BAC=2∠BPC,
∴∠BPC=∠BAC,故②正确;
③∵PM⊥AB,PN⊥BC,
∴∠ABC+90°+∠MPN+90°=360°,
∴∠ABC+∠MPN=180°,
∴∠APC=90°﹣∠ABC,故③正确;
④∵S△APD=S△APM,S△CPD=S△CPN,
∴S△APM+S△CPN=S△APC,故④不正确.
综上所述,①②③正确.
故答案为:①②③.
三.解答题(共8小题,满分48分)
19.证明:(1)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴DE=DC,
在Rt△CDF和Rt△EDB中,
,
∴Rt△CDF≌Rt△EDB(HL).
∴CF=EB;
(2)∵AD是∠BAC的平分线,DE⊥AB,DC⊥AC,
∴CD=DE.
在Rt△ADC与Rt△ADE中,
,
∴Rt△ADC≌Rt△ADE(HL),
∴AC=AE,
∴AB=AE+BE=AC+EB=AF+CF+EB=AF+2EB.
20.解:(1)∵AB∥CD,
∴∠BAD+∠ADC=180°,
∵AM平分∠BAD,DM平分∠ADC,
∴2∠MAD+2∠ADM=180°,
∴∠MAD+∠ADM=90°,
∴∠AMD=90°,
即AM⊥DM;
(2)作NM⊥AD交AD于N,
∵∠B=90°,AB∥CD,
∴BM⊥AB,CM⊥CD,
∵AM平分∠BAD,DM平分∠ADC,
∴BM=MN,MN=CM,
∴BM=CM,
即M为BC的中点.
21.解:(1)∵DM、EN分别垂直平分AC和BC,
∴AM=CM,BN=CN,
∴△CMN的周长=CM+MN+CN=AM+MN+BN=AB,
∵△CMN的周长为15cm,
∴AB=15cm;
(2)∵∠MFN=70°,
∴∠MNF+∠NMF=180°﹣70°=110°,
∵∠AMD=∠NMF,∠BNE=∠MNF,
∴∠AMD+∠BNE=∠MNF+∠NMF=110°,
∴∠A+∠B=90°﹣∠AMD+90°﹣∠BNE=180°﹣110°=70°,
∵AM=CM,BN=CN,
∴∠A=∠ACM,∠B=∠BCN,
∴∠MCN=180°﹣2(∠A+∠B)=180°﹣2×70°=40°.
22.证明:(1)∵AD∥BC(已知),
∴∠ADC=∠ECF(两直线平行,内错角相等),
∵E是CD的中点(已知),
∴DE=EC(中点的定义).
∵在△ADE与△FCE中,
,
∴△ADE≌△FCE(ASA),
∴FC=AD(全等三角形的性质).
(2)∵△ADE≌△FCE,
∴AE=EF,AD=CF(全等三角形的对应边相等),
又∵BE⊥AF,
∴BE是线段AF的垂直平分线,
∴AB=BF=BC+CF,
∵AD=CF(已证),
∴AB=BC+AD(等量代换).
23.证明:∵BD为∠ABC的平分线,
∴∠ABD=∠CBD,
在△ABD和△CBD中,,
∴△ABD≌△CBD(SAS),
∴∠ADB=∠CDB,
∵点P在BD上,PM⊥AD,PN⊥CD,
∴PM=PN.
24.解:PC与PD相等.理由如下:
过点P作PE⊥OA于点E,PF⊥OB于点F.
∵OM平分∠AOB,点P在OM上,PE⊥OA,PF⊥OB,
∴PE=PF(角平分线上的点到角两边的距离相等)
又∵∠AOB=90°,∠PEO=∠PFO=90°,
∴四边形OEPF为矩形,
∴∠EPF=90°,
∴∠EPC+∠CPF=90°,
又∵∠CPD=90°,
∴∠CPF+∠FPD=90°,
∴∠EPC=∠FPD=90°﹣∠CPF.
在△PCE与△PDF中,
∵,
∴△PCE≌△PDF(ASA),
∴PC=PD.
25.解:①以O为圆心,以任意长为半径画圆,分别交直线a、b于点A、B;
②分别以A、B为圆心,以大于AB为半径画圆,两圆相交于点C,连接OC;
③连接ED,分别以E、D为圆心,以大于ED为半径画圆,两圆相交于F、G两点,连接FG;
④FG与OC相交于点H,则H即为工厂的位置.
同法可得H′也满足条件,
故点H或H′即为工厂的位置.
26.解:(1)
过A作AE⊥BC于E,
∵点D是BC边上的中点,
∴BD=DC,
∴SABD:S△ACD=(×BD×AE):(×CD×AE)=1:1,
故答案为:1:1;
(2)
过D作DE⊥AB于E,DF⊥AC于F,
∵AD为∠BAC的角平分线,
∴DE=DF,
∵AB=m,AC=n,
∴SABD:S△ACD=(×AB×DE):(×AC×DF)=m:n;
(3)
∵AD=DE,
∴由(1)知:S△ABD:S△EBD=1:1,
∵S△BDE=6,
∴S△ABD=6,
∵AC=2,AB=4,AD平分∠CAB,
∴由(2)知:S△ABD:S△ACD=AB:AC=4:2=2:1,
∴S△ACD=3,
∴S△ABC=3+6=9,
故答案为:9.