2021-2022学年北师大版九年级数学上册《1.1菱形的性质与判定》期中复习训练(附答案)
1.如图,两张等宽的纸条交叉重叠在一起,重叠的部分为四边形ABCD,若测得A,C之间的距离为12cm,点B,D之间的距离为16cm,则线段AB的长为( )
A.9.6cm B.10cm C.20cm D.12cm
2.如图,在∠MON的两边上分别截取OA、OB,使OA=OB;分别以点A、B为圆心,OA长为半径作弧,两弧交于点C;连接AC、BC、AB、OC.若AB=2cm,四边形OACB的面积为4cm2.则OC的长为( )
A.2 B.3 C.4 D.5
3.下列说法中不正确的是( )
A.对角线垂直的平行四边形是菱形 B.四边相等的四边形是菱形
C.菱形的对角线互相垂直且相等 D.菱形的邻边相等
4.如图, ABCD中,对角线AC、BD相交于点O,AD=AC,M、N、P分别是OA、OB、CD的中点,下列结论:
①CN⊥BD;
②MN=NP;
③四边形MNCP是菱形;
④ND平分∠PNM.
其中正确的有( )
A.1 个 B.2 个 C.3 个 D.4 个
5.如图,平行四边形ABCD中,∠A=110°,AD=DC.E,F分别是边AB和BC的中点,EP⊥CD于点P,则∠PEF=( )
A.35° B.45° C.50° D.55°
6.如图,在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,要使四边形EFGH是菱形,则四边形ABCD只需要满足一个条件,是( )
A.四边形ABCD是梯形 B.四边形ABCD是菱形
C.对角线AC=BD D.AD=BC
7.如图,在 ABCD中,M,N是BD上两点,BM=DN,连接AM,MC,CN,NA,添加一个条件,使四边形AMCN是菱形,这个条件是( )
A.OM=AC B.MB=MO C.BD⊥AC D.∠AMB=∠CND
8.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH等于( )
A. B. C.5 D.4
9.如图,在菱形ABCD中,M,N分别在AB,CD上,且AM=CN,MN与AC交于点O,连接BO.若∠DAC=28°,则∠OBC的度数为( )
A.28° B.52° C.62° D.72°
10.如图,在Rt△ABC中,∠ACB=90°,AC=BC=6cm,动点P从点A出发,沿AB方向以每秒cm的速度向终点B运动;同时,动点Q从点B出发沿BC方向以每秒1cm的速度向终点C运动,将△PQC沿BC翻折,点P的对应点为点P′.设Q点运动的时间为t秒,若四边形QP′CP为菱形,则t的值为( )
A. B.2 C. D.3
11.如图,在菱形ABCD中,P是对角线AC上一动点,过点P作PE⊥BC于点E.PF⊥AB于点F.若菱形ABCD的周长为20,面积为24,则PE+PF的值为( )
A.4 B. C.6 D.
12.如图,矩形ABCD的对角线AC,BD相交于点O,CE∥BD,DE∥AC.若AC=4,则四边形CODE的周长是 .
13.一个平行四边形的一边长是3,两条对角线的长分别是4和,则此平行四边形的面积为 .
14.如图,若菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,则点C的坐标是 .
15.如图,菱形ABCD的对角线AC,BD相交于点O,过点A作AH⊥BC于点H,连接OH,若OB=4,S菱形ABCD=24,则OH的长为 .
16.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB=,BD=2,求OE的长.
17.如图,在△ABC中,DE分别是AB,AC的中点,BE=2DE,延长DE到点F,使得EF=BE,连CF.
(1)求证:四边形BCFE是菱形;
(2)若CE=6,∠BEF=120°,求菱形BCFE的面积.
18.如图,在平行四边形ABCD中,∠BAD的平分线交BC于点E,交DC的延长线于F,以EC、CF为邻边作平行四边形ECFG,如图1所示.
(1)证明平行四边形ECFG是菱形;
(2)若∠ABC=120°,连接BG、CG、DG,如图2所示,
①求证:△DGC≌△BGE;
②求∠BDG的度数.
(3)若∠ABC=90°,AB=8,AD=14,M是EF的中点,如图3所示,求DM的长.
19.如图,在平行四边形ABCD中,P是对角线BD上的一点,过点C作CQ∥DB,且CQ=DP,连接AP、BQ、PQ.
(1)求证:△APD≌△BQC;
(2)若∠ABP+∠BQC=180°,求证:四边形ABQP为菱形.
20.在菱形ABCD中,点P是BC边上一点,连接AP,点E,F是AP上的两点,连接DE,BF,使得∠AED=∠ABC,∠ABF=∠BPF.
求证:(1)△ABF≌△DAE;
(2)DE=BF+EF.
21.【猜想】如图1,在平行四边形ABCD中,点O是对角线AC的中点,过点O的直线分别交AD.BC于点E.F.若平行四边形ABCD的面积是8,则四边形CDEF的面积是 .
【探究】如图2,在菱形ABCD中,对角线相交于点O,过点O的直线分别交AD,BC于点E,F,若AC=5,BD=10,求四边形ABFE的面积.
【应用】如图3,在Rt△ABC中,∠BAC=90°,延长BC到点D,使DC=BC,连接AD,若AC=3,AD=2,则△ABD的面积是 .
参考答案
1.解:作AR⊥BC于R,AS⊥CD于S,连接AC、BD交于点O.
由题意知:AD∥BC,AB∥CD,
∴四边形ABCD是平行四边形,
∵两个矩形等宽,
∴AR=AS,
∵AR BC=AS CD,
∴BC=CD,
∴平行四边形ABCD是菱形,
∴AC⊥BD,
在Rt△AOB中,∵OA=AC=6cm,OB=BD=8cm,
∴AB==10(cm),
故选:B.
2.解:根据作图,AC=BC=OA,
∵OA=OB,
∴OA=OB=BC=AC,
∴四边形OACB是菱形,
∵AB=2cm,四边形OACB的面积为4cm2,
∴AB OC=×2×OC=4,
解得OC=4cm.
故选:C.
3.解:A.对角线垂直的平行四边形是菱形;正确;
B.四边相等的四边形是菱形;正确;
C.菱形的对角线互相垂直且相等;不正确;
D.菱形的邻边相等;正确;
故选:C.
4.解:∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,BC=AD,OA=OC=AC,
∵AD=AC,
∴OC=BC,
∵N是OB的中点,
∴CN⊥BD,①正确;
∵M、N分别是OA、OB的中点,
∴MN是△AOB的中位线,
∴MN∥AB,MN=AB,
∵CN⊥BD,
∴∠CND=90°,
∵P是CD的中点,
∴NP=CD=PD=PC,
∴MN=NP,②正确;
∵MN∥AB,AB∥CD,
∴MN∥CD,
又∵NP=PC,MN=NP,
∴MN=PC,
∴四边形MNCP是平行四边形,无法证明四边形MNCP是菱形;③错误;
∵MN∥CD,
∴∠PDN=∠MND,
∵NP=PD,
∴∠PDN=∠PND,
∴∠MND=∠PND,
∴ND平分∠PNM,④正确;
正确的个数有3个,
故选:C.
5.解:∵平行四边形ABCD中,AD=DC,
∴四边形ABCD为菱形,
∴AB=BC,∠ABC=180°﹣∠A=70°,
∵E,F分别为AB,BC的中点,
∴BE=BF,∠BEF=∠BFE=55°,
∵PE⊥AB,
∴∠PEB=90°
∴∠PEF=90°﹣55°=35°,
故选:A.
6.解:∵在四边形ABCD中,E、F、G、H分别是AB、BD、CD、AC的中点,
∴EF∥AD,HG∥AD,
∴EF∥HG;
同理,HE∥GF,
∴四边形EFGH是平行四边形;
A、若四边形ABCD是梯形时,AD≠CD,则GH≠FE,这与平行四边形EFGH的对边GH=FE相矛盾;故本选项错误;
B、若四边形ABCD是菱形时,点EFGH四点共线;故本选项错误;
C、若对角线AC=BD时,四边形ABCD可能是等腰梯形,证明同A选项;故本选项错误;
D、当AD=BC时,GH=GF;所以平行四边形EFGH是菱形;故本选项正确;
故选:D.
7.证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD
∵对角线BD上的两点M、N满足BM=DN,
∴OB﹣BM=OD﹣DN,即OM=ON,
∴四边形AMCN是平行四边形,
∵BD⊥AC,
∴MN⊥AC,
∴四边形AMCN是菱形.
故选:C.
8.解:设AC交BD于O,
∵四边形ABCD是菱形,
∴AO=OC,BO=OD,AC⊥BD,
∵AC=8,DB=6,
∴AO=4,OB=3,∠AOB=90°,
由勾股定理得:AB==5,
∵S菱形ABCD=,
∴,
∴DH=,
故选:A.
9.解:∵四边形ABCD为菱形,
∴AB∥CD,AB=BC,
∴∠MAO=∠NCO,∠AMO=∠CNO,
在△AMO和△CNO中,
∵,
∴△AMO≌△CNO(ASA),
∴AO=CO,
∵AB=BC,
∴BO⊥AC,
∴∠BOC=90°,
∵∠DAC=28°,
∴∠BCA=∠DAC=28°,
∴∠OBC=90°﹣28°=62°.
故选:C.
10.解:连接PP′交BC于O,
∵若四边形QPCP′为菱形,
∴PP′⊥QC,
∴∠POQ=90°,
∵∠ACB=90°,
∴PO∥AC,
∵设点Q运动的时间为t秒,
∴AP=t,QB=t,
∴QC=6﹣t,
∴CO=3﹣,
∵AC=CB=6,∠ACB=90°,
∴AB=6,
∴=,
解得:t=2,
故选:B.
11.解:连接BP,如图,
∵四边形ABCD为菱形,菱形ABCD的周长为20,
∴BA=BC=5,S△ABC=S菱形ABCD=12,
∵S△ABC=S△PAB+S△PBC,
∴×5×PE+×5×PF=12,
∴PE+PF=,
故选:B.
12.解:∵CE∥BD,DE∥AC,
∴四边形CODE是平行四边形,
∵四边形ABCD是矩形,
∴OC=AC=2,OD=BD,AC=BD,
∴OC=OD=2,
∴四边形CODE是菱形,
∴DE=CE=OC=OD=2,
∴四边形CODE的周长=2×4=8;
故答案为:8.
13.解:∵平行四边形两条对角线互相平分,
∴它们的一半分别为2和,
∵22+()2=32,
∴两条对角线互相垂直,
∴这个四边形是菱形,
∴S=4×2=4.
故答案为:4.
14.解:∵菱形ABCD的顶点A,B的坐标分别为(3,0),(﹣2,0),点D在y轴上,
∴AB=5,
∴AD=5,
∴由勾股定理知:OD===4,
∴点C的坐标是:(﹣5,4).
故答案为:(﹣5,4).
15.解:∵ABCD是菱形,
∴BO=DO=4,AO=CO,S菱形ABCD==24,
∴AC=6,
∵AH⊥BC,AO=CO=3,
∴OH=AC=3.
故答案为3
16.解:(1)∵AB∥CD,
∴∠OAB=∠DCA,
∵AC为∠DAB的平分线,
∴∠OAB=∠DAC,
∴∠DCA=∠DAC,
∴CD=AD=AB,
∵AB∥CD,
∴四边形ABCD是平行四边形,
∵AD=AB,
∴ ABCD是菱形;
(2)∵四边形ABCD是菱形,
∴OA=OC,BD⊥AC,
∵CE⊥AB,
∴OE=OA=OC,
∵BD=2,
∴OB=BD=1,
在Rt△AOB中,AB=,OB=1,
∴OA==2,
∴OE=OA=2.
17.(1)证明:∵D、E分别是AB、AC的中点,
∴DE∥BC且2DE=BC,
又∵BE=2DE,EF=BE,
∴EF=BC,EF∥BC,
∴四边形BCFE是平行四边形,
又∵BE=EF,
∴四边形BCFE是菱形;
(2)解:∵∠BEF=120°,
∴∠EBC=60°,
∴△EBC是等边三角形,
∴BE=BC=CE=6,
过点E作EG⊥BC于点G,
∴EG=BE sin60°=6×=3,
∴S菱形BCFE=BC EG=6×3=18.
18.解:(1)证明:
∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形;
(2)①∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,AD∥BC,
∵∠ABC=120°,
∴∠BCD=60°,∠BCF=120°
由(1)知,四边形CEGF是菱形,
∴CE=GE,∠BCG=∠BCF=60°,
∴CG=GE=CE,∠DCG=120°,
∵EG∥DF,
∴∠BEG=120°=∠DCG,
∵AE是∠BAD的平分线,
∴∠DAE=∠BAE,
∵AD∥BC,
∴∠DAE=∠AEB,
∴∠BAE=∠AEB,
∴AB=BE,
∴BE=CD,
∴△DGC≌△BGE(SAS);
②∵△DGC≌△BGE,
∴BG=DG,∠BGE=∠DGC,
∴∠BGD=∠CGE,
∵CG=GE=CE,
∴△CEG是等边三角形,
∴∠CGE=60°,
∴∠BGD=60°,
∵BG=DG,
∴△BDG是等边三角形,
∴∠BDG=60°;
(3)方法一:如图3中,连接BM,MC,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
∵,
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形.
∵AB=8,AD=14,
∴BD=2,
∴DM=BD=.
方法二:过M作MH⊥DF于H,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
又由(1)可知四边形ECFG为菱形,
∠ECF=90°,
∴四边形ECFG为正方形,
∴∠CEF=45°,
∴∠AEB=∠CEF=45°,
∴BE=AB=8,
∴CE=CF=14﹣8=6,
∵MH∥CE,EM=FM,
∴CH=FH=CF=3,
∴MH=CE=3,
∴DH=11,
∴DM==.
19.(1)证明:∵四边形ABCD是平行四边形,
∴AD=BC,AD∥BC,
∴∠ADB=∠DBC,
∵CQ∥DB,
∴∠BCQ=∠DBC,
∴∠ADB=∠BCQ
∵DP=CQ,
∴△ADP≌△BCQ.
(2)证明:∵CQ∥DB,且CQ=DP,
∴四边形CQPD是平行四边形,
∴CD=PQ,CD∥PQ,
∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴AB=PQ,AB∥PQ,
∴四边形ABQP是平行四边形,
∵△ADP≌△BCQ,
∴∠APD=∠BQC,
∵∠APD+∠APB=180°,∠ABP+∠BQC=180°,
∴∠ABP=∠APB,
∴AB=AP,
∴四边形ABQP是菱形.
20.证明:(1)∵四边形ABCD是菱形,
∴AB=AD,AD∥BC,
∴∠BPA=∠DAE,
∵∠ABC=∠AED,
∴∠BAF=∠ADE,
∵∠ABF=∠BPF,∠BPA=∠DAE,
∴∠ABF=∠DAE,
∵AB=DA,
∴△ABF≌△DAE(ASA);
(2)∵△ABF≌△DAE,
∴AE=BF,DE=AF,
∵AF=AE+EF=BF+EF,
∴DE=BF+EF.
21.解:猜想:∵四边形ABCD是平行四边形,
∴AD∥BC,OA=OC.
∴∠EAO=∠FCO,∠AEO=∠CFO,
在△AOE与△COF中,
,
∴△AEO≌△CFO(AAS),
∴四边形CDEF的面积=S△ACD= ABCD的面积=4;
故答案为:4;
探究:∵四边形ABCD是菱形,
∴AD∥BC,AO=CO.
∴∠OAE=∠OCF,∠AEO=∠CFO,
∴在△AOE与△COF中,
,
∴△AOE≌△COF(AAS),
∵由菱形的对称性,得S△ABC=S菱形ABCD,
∴S四边形ABFE=S△ABC=×AC BO=×5×10=.
应用:延长AC到E使CE=AC=3,
在△ABC与△CDE中,
,
∴△ABC≌△CDE(SAS),
∴∠E=∠BAC=90°,
∴DE=,
∴S△ABD=S△ADE=AE DE=×6×2=6.
故答案为:6