小学数学四年级上册《积的变化规律》教学设计人教版

文档属性

名称 小学数学四年级上册《积的变化规律》教学设计人教版
格式 doc
文件大小 30.5KB
资源类型 教案
版本资源 人教版
科目 数学
更新时间 2021-11-07 11:50:57

图片预览

文档简介

《积的变化规律》教案
教学目标:
知识与技能:
1、学生通过观察,能够发现并总结积的变化规律。
2、初步获得探索规律的一般方法和经验,发展学生的推理能力。
3、培养学生用数学语言表达数学结论的能力
4、通过练习,进一步巩固积的变化规律,并能应用规律解决问题。
过程与方法:
1、使学生经历变化规律的发现过程,感受发现数学中的规律是一件十分有趣的事情。
2、尝试用简洁的语言表达积的变化规律,培养初步的概括和表达能力。
3、初步获得探索规律的一般方法和经验,发展学生的推理能力。
情感、态度和价值观:
培养学生初步的抽象、概括能力及善于观察、勤于思考、勇于探索的良好习惯。
教学重点:引导学生自己发现并总结积的变化规律。
教学难点:引导学生自己发现并总结积的变化规律。
教学过程:
一、教师导学:
课前三题:321×19 164×15 321×16
师:前两节课我们共同学习了三位数乘两位数的笔算乘法,今天的数学课我们将继续研究有关乘法的问题。师利用课件出示课题《积的变化规律》,学生齐读课题,师引导学生说:“通过读课题,同学们猜猜看,今天我们要研究乘法算式中有关谁的问题?”(积)通过读课题,你还想知道哪些问题?
(1)、积有什么样的变化规律?
(2)、积的变化会与谁有关?
(3)、学习积的变化规律有什么用呢?
师:同学们提出的数学问题都很有研究价值,下面我们就带着这些数学问题,共同进入今天的数学课。
二、探究新知:
研究“两数相乘,其中一个因数不变,另一个因数变化,那么它们的积如何变化。
1、研究问题,概括规律(例4)
师:让我们从一组简单的口算入手:
观察下面两组题,说一说你发现了什么?
(1)6×2=12
6×20=120
6×200=1200
师:你能很快计算出这组算式的得数吗?
师:同学们认真观察算式,你发现了什么?
生:都有一个因数是6,另一个因数从2到20再到200
师:认真观察思考,积是怎样变化的?
生:积从12到120再到1200.
师:这就是说一个因数不变,另一个因数乘几,积也乘几。
2、引导学生根据上面的积的变化规律,完成下列两组计算,想一想发现了什么?你能根据每组算式的特点接下去再写两道算式吗?试试看
6×2= 8×125=
6×20= 24×125=
6×200= 72×125=
组织小组交流
归纳规律:两数相乘,当一个因数不变,另一个因数乘几时,积也要乘几。
3、两数相乘,一个因数不变,另一个因数除以几时,积有怎么变化?学生完成下列两组计算,想一想有发现了什么?
8×4= 25×160=
40×4= 25×40=
20×4= 25×10=
引导学生概括:
两数相乘,当一个因数不变,另一个因数除以几时,积也要除以几。
4、整体概括规律
问:谁能用一句话将发现的两条规律概括为一条?
引导学生总结规律。
2、验证规律
1)先用积的变化规律填空,再用笔算或计算器验算。
26×48= 17×12=
26×24= 17×24=
26×12= 17×36=
自己举例说明积的变化规律
5、应用规律
完成例4下面的做一做和练习9的1-——4题
3、拓展延伸:
研究“两数相乘,两个因数都发生变化,积变化的规律“。
1、独立思考,发现规律
完成下列计算,说规律。
18×24=
(18÷2)×(24×2)=
(18×2)×(24÷2)=
105×45
(105÷5)×(45×5)=
(105×3)×(45÷3)=
2、组织全班交流,概括规律
两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,它们的乘积不变。
三、巩固新知
1、P51 “做一做”
四、全课总结
这节课有什么收获?
五、作业:练习九第1题
课后反思:
《积的变化规律》是教材四年级上册第三单元的内容,它是在学生掌握了三位数乘两位数的计算方法的基础上进行教学的。本节课主要引导学生探索当一个因数不变时,另一个因数与积的变化情况,从中归纳出积的变化规律。 在本课教学中,我注重让学生充分参与积的变化这个规律的发现,让学生在充分地观察、大量的举例中去感悟积的变化的规律,充分调动学生参与的主动性,初步构建自己的认知体系。让学生自己经历研究问题的一般方法是:研究具体问题——归纳发现规律——解释说明规律——举例验证规律。让学生真正成为了课堂的主人,给学生留出了充足的探索空间,让学生自主地进行探索与交流。老师只是适时补充或纠正。我在练习题的设计上,既注重了基础知识的巩固,又注意了不同层次学生的需求。我不仅使学生了解课本上的积的变化规律:两数想乘,一个因数不变,另一个因数乘(或除以)几,积就乘(或除以)几;我还通过练习,让学生感知了:两数相乘,一个因数乘(或除以)几,另一个因数除以(或乘)几,积不变的规律;两数相乘,两个因数分别扩大若干倍,积就扩大两因数扩大倍数的积的倍数。拓展了学生的思路,我认为平时的教学不应受教材的框框限制,适合自己,适合学生,教会学生思考的方法,培养学生的数学思想是最重要的。 但我也反思了自己课堂上的一些不足:学生通过举例、观察对积的变化规律有了初步的感悟、也有了初步的理解,但学生在描述规律时,语言总是不够准确、表述总是不够完整。“语言表达是学生思维的全面展现”,学生们对于新知内容的理解在很大程度上靠语言描绘去反馈,当学生的概括能力受挫时,我想:首先应该反思的是我们的教学是否让学生真正明白了。当学生真正明白了一道、两道、十道,甚至更多的题目后,怎样概括,而不是让学生就题论题似乎也是个问题。今后我要不断尝试充分地发挥自己的主导作用,怎样抓住一些关键的例子、抓住一些关键的词语让学生去推敲、去体会,最终引导学生完整、准确地描述出积变化的规律,并通过一些重点词的理解,使学生更加深刻地理解规律,构建起完整的认知体系。切不可因为怕耽误进度、怕麻烦、怕罗嗦而剥夺了学生说的权利,剥夺了锻炼学生思维的机会,使主导霸道地代替了主体。 另外,只有让学生真正深刻地理解规律,才能熟练、恰当地运用规律,而不是生搬硬套。例如:1、货车在普通公路上以45千米/时的速度行驶,4小时可以行多少千米?8小时呢?12小时呢?
2、一块长方形的果园,长是18米,面积是108平方米。如果长不变,宽扩大3倍,扩大后的果园面积是多少平方米? 很显然,这两道题用积的变化规律来解决是最简便快捷的方法。而学生只有真正深刻地理解了积的变化规律,才会活学活用,而不至于再用老法子去绕圈解决,从而使学生更深体会到学数学、用数学,生活中处处有数学。